Guidance Trajectories for Spacecraft Rendezvous View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

A. Miele, M. Ciarcià, M. W. Weeks

ABSTRACT

In a previous paper of Miele et al. (J. Optim. Theory Appl. 132(1), 2007), we employed the single-subarc sequential gradient-restoration algorithm to optimize the three-dimensional rendezvous between a target spacecraft in a planar circular orbit and a chaser spacecraft with an initial separation distance and separation velocity. The achieved continuous solutions are characterized by two, three, or four subarcs depending on the performance index (time, fuel) and the constraints. In this paper, based on the solutions in Miele et al. (J. Optim. Theory Appl. 132(1), 2007), we employ the multiple-subarc sequential gradient-restoration algorithm to produce pieced guidance trajectories implementable in real time via constant control components. In other words, in this investigation, we force the controls to behave as parameters in each subarc. With the above understanding, we investigate four problems: (P1) minimum time, fuel free; (P2) minimum fuel, time free; (P3) minimum time, fuel given; (P4) minimum fuel, time given. Problem P1 results in a two-subarc solution, each subarc with constant controls: a max-thrust accelerating subarc followed by a max-thrust braking subarc. Problem P2 results in a four-subarc solution, each subarc with constant controls: an initial coasting subarc, followed by a max-thrust braking subarc, followed by another coasting subarc, followed by another max-thrust braking subarc. Problems P3 and P4 result in two, three, or four-subarc solutions depending on the performance index and the constraints, albeit with constant controls in each subarc. For each of the problems studied, the performance index of the multiple-subarc pieced guidance trajectory approximates well the performance index of the single-subarc continuous optimal trajectory of Miele et al. (J. Optim. Theory Appl. 132(1), 2007) as well as the performance index of the multiple-subarc pieced optimal trajectory: the pairwise relative differences in performance index are less than 1/100. More... »

PAGES

377-400

References to SciGraph publications

  • 1970-04. Sequential gradient-restoration algorithm for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1972-12. Summary and comparison of gradient-restoration algorithms for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1975-12. Recent advances in gradient algorithms for optimal control problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1968-07. Method of particular solutions for linear, two-point boundary-value problems in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2007-01. Lower-Order Penalization Approach to Nonlinear Semidefinite Programming in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2003-01. Multiple-Subarc Gradient-Restoration Algorithm, Part 2: Application to a Multistage Launch Vehicle Design in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1978-11. Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2003-01. Multiple-Subarc Gradient-Restoration Algorithm, Part 1: Algorithm Structure in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10957-007-9165-5

    DOI

    http://dx.doi.org/10.1007/s10957-007-9165-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037186961


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miele", 
            "givenName": "A.", 
            "id": "sg:person.015552732657.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ciarci\u00e0", 
            "givenName": "M.", 
            "id": "sg:person.011306316257.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306316257.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aeroscience and Flight Mechanics Division, NASA-Johnson Space Center, Houston, TX, USA", 
              "id": "http://www.grid.ac/institutes/grid.419085.1", 
              "name": [
                "Aeroscience and Flight Mechanics Division, NASA-Johnson Space Center, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weeks", 
            "givenName": "M. W.", 
            "id": "sg:person.013430524457.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430524457.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1022114117273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022677003", 
              "https://doi.org/10.1023/a:1022114117273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00937371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008341596", 
              "https://doi.org/10.1007/bf00937371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-006-9055-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037465021", 
              "https://doi.org/10.1007/s10957-006-9055-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00933463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007322541", 
              "https://doi.org/10.1007/bf00933463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00935401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004726016", 
              "https://doi.org/10.1007/bf00935401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00927913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010952160", 
              "https://doi.org/10.1007/bf00927913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00932781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017158292", 
              "https://doi.org/10.1007/bf00932781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022154001343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020008711", 
              "https://doi.org/10.1023/a:1022154001343"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-03", 
        "datePublishedReg": "2007-03-01", 
        "description": "Abstract\nIn a previous paper of Miele et al. (J. Optim. Theory Appl. 132(1), 2007), we employed the single-subarc sequential gradient-restoration algorithm to optimize the three-dimensional rendezvous between a target spacecraft in a planar circular orbit and a chaser spacecraft with an initial separation distance and separation velocity. The achieved continuous solutions are characterized by two, three, or four subarcs depending on the performance index (time, fuel) and the constraints. In this paper, based on the solutions in Miele et al. (J. Optim. Theory Appl. 132(1), 2007), we employ the multiple-subarc sequential gradient-restoration algorithm to produce pieced guidance trajectories implementable in real time via constant control components. In other words, in this investigation, we force the controls to behave as parameters in each subarc. With the above understanding, we investigate four problems: (P1)\u00a0minimum time, fuel free; (P2)\u00a0minimum fuel, time free; (P3)\u00a0minimum time, fuel given; (P4)\u00a0minimum fuel, time given.\n\nProblem P1 results in a two-subarc solution, each subarc with constant controls: a\u00a0max-thrust accelerating subarc followed by a\u00a0max-thrust braking subarc. Problem\u00a0P2 results in a four-subarc solution, each subarc with constant controls: an initial coasting subarc, followed by a max-thrust braking subarc, followed by another coasting subarc, followed by another max-thrust braking subarc. Problems P3 and P4 result in two, three, or four-subarc solutions depending on the performance index and the constraints, albeit with constant controls in each subarc.\n\nFor each of the problems studied, the performance index of the multiple-subarc pieced guidance trajectory approximates well the performance index of the single-subarc continuous optimal trajectory of Miele et al. (J. Optim. Theory Appl. 132(1), 2007) as well as the performance index of the multiple-subarc pieced optimal trajectory: the pairwise relative differences in performance index are less than 1/100.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10957-007-9165-5", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "132"
          }
        ], 
        "keywords": [
          "minimum fuel", 
          "performance index", 
          "guidance trajectories", 
          "initial separation distance", 
          "spacecraft rendezvous", 
          "target spacecraft", 
          "chaser spacecraft", 
          "fuel", 
          "separation velocity", 
          "sequential gradient-restoration algorithm", 
          "separation distance", 
          "minimum time", 
          "gradient-restoration algorithm", 
          "control components", 
          "optimal trajectories", 
          "constant control", 
          "real time", 
          "spacecraft", 
          "solution", 
          "rendezvous", 
          "multiple-subarc sequential gradient-restoration algorithm", 
          "above understanding", 
          "previous paper", 
          "al", 
          "velocity", 
          "continuous solution", 
          "algorithm", 
          "trajectories", 
          "relative difference", 
          "control", 
          "problem", 
          "constraints", 
          "time", 
          "parameters", 
          "circular orbit", 
          "investigation", 
          "et al", 
          "components", 
          "results", 
          "approximates", 
          "orbit", 
          "distance", 
          "index", 
          "subarcs", 
          "Miele", 
          "understanding", 
          "differences", 
          "P2", 
          "P4 results", 
          "P1", 
          "Problem P1", 
          "P3", 
          "words", 
          "paper", 
          "planar circular orbits", 
          "Problems P3"
        ], 
        "name": "Guidance Trajectories for Spacecraft Rendezvous", 
        "pagination": "377-400", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037186961"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10957-007-9165-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10957-007-9165-5", 
          "https://app.dimensions.ai/details/publication/pub.1037186961"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_445.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10957-007-9165-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-007-9165-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-007-9165-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-007-9165-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-007-9165-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      21 PREDICATES      89 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10957-007-9165-5 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Ncbdc54d52d7e43beb6c9ac6f3d29c434
    4 schema:citation sg:pub.10.1007/bf00927913
    5 sg:pub.10.1007/bf00932781
    6 sg:pub.10.1007/bf00933463
    7 sg:pub.10.1007/bf00935401
    8 sg:pub.10.1007/bf00937371
    9 sg:pub.10.1007/s10957-006-9055-2
    10 sg:pub.10.1023/a:1022114117273
    11 sg:pub.10.1023/a:1022154001343
    12 schema:datePublished 2007-03
    13 schema:datePublishedReg 2007-03-01
    14 schema:description Abstract In a previous paper of Miele et al. (J. Optim. Theory Appl. 132(1), 2007), we employed the single-subarc sequential gradient-restoration algorithm to optimize the three-dimensional rendezvous between a target spacecraft in a planar circular orbit and a chaser spacecraft with an initial separation distance and separation velocity. The achieved continuous solutions are characterized by two, three, or four subarcs depending on the performance index (time, fuel) and the constraints. In this paper, based on the solutions in Miele et al. (J. Optim. Theory Appl. 132(1), 2007), we employ the multiple-subarc sequential gradient-restoration algorithm to produce pieced guidance trajectories implementable in real time via constant control components. In other words, in this investigation, we force the controls to behave as parameters in each subarc. With the above understanding, we investigate four problems: (P1) minimum time, fuel free; (P2) minimum fuel, time free; (P3) minimum time, fuel given; (P4) minimum fuel, time given. Problem P1 results in a two-subarc solution, each subarc with constant controls: a max-thrust accelerating subarc followed by a max-thrust braking subarc. Problem P2 results in a four-subarc solution, each subarc with constant controls: an initial coasting subarc, followed by a max-thrust braking subarc, followed by another coasting subarc, followed by another max-thrust braking subarc. Problems P3 and P4 result in two, three, or four-subarc solutions depending on the performance index and the constraints, albeit with constant controls in each subarc. For each of the problems studied, the performance index of the multiple-subarc pieced guidance trajectory approximates well the performance index of the single-subarc continuous optimal trajectory of Miele et al. (J. Optim. Theory Appl. 132(1), 2007) as well as the performance index of the multiple-subarc pieced optimal trajectory: the pairwise relative differences in performance index are less than 1/100.
    15 schema:genre article
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N3bc342f5dad148c383c31925d52afb30
    18 N5573001f337141fa95631a283e118fdd
    19 sg:journal.1044187
    20 schema:keywords Miele
    21 P1
    22 P2
    23 P3
    24 P4 results
    25 Problem P1
    26 Problems P3
    27 above understanding
    28 al
    29 algorithm
    30 approximates
    31 chaser spacecraft
    32 circular orbit
    33 components
    34 constant control
    35 constraints
    36 continuous solution
    37 control
    38 control components
    39 differences
    40 distance
    41 et al
    42 fuel
    43 gradient-restoration algorithm
    44 guidance trajectories
    45 index
    46 initial separation distance
    47 investigation
    48 minimum fuel
    49 minimum time
    50 multiple-subarc sequential gradient-restoration algorithm
    51 optimal trajectories
    52 orbit
    53 paper
    54 parameters
    55 performance index
    56 planar circular orbits
    57 previous paper
    58 problem
    59 real time
    60 relative difference
    61 rendezvous
    62 results
    63 separation distance
    64 separation velocity
    65 sequential gradient-restoration algorithm
    66 solution
    67 spacecraft
    68 spacecraft rendezvous
    69 subarcs
    70 target spacecraft
    71 time
    72 trajectories
    73 understanding
    74 velocity
    75 words
    76 schema:name Guidance Trajectories for Spacecraft Rendezvous
    77 schema:pagination 377-400
    78 schema:productId N51ce66d871b14e4db3a4a5ad69542c53
    79 Nf4325bd1b5e3422994b2655f424b7beb
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037186961
    81 https://doi.org/10.1007/s10957-007-9165-5
    82 schema:sdDatePublished 2022-11-24T20:52
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher Nddb12eb7b49443f19385bb9016051e3c
    85 schema:url https://doi.org/10.1007/s10957-007-9165-5
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N226b7feca0174badbe42f0feef96e6a3 rdf:first sg:person.011306316257.92
    90 rdf:rest N712464f62a484ca1b66682b9ed1876b9
    91 N3bc342f5dad148c383c31925d52afb30 schema:volumeNumber 132
    92 rdf:type schema:PublicationVolume
    93 N51ce66d871b14e4db3a4a5ad69542c53 schema:name dimensions_id
    94 schema:value pub.1037186961
    95 rdf:type schema:PropertyValue
    96 N5573001f337141fa95631a283e118fdd schema:issueNumber 3
    97 rdf:type schema:PublicationIssue
    98 N712464f62a484ca1b66682b9ed1876b9 rdf:first sg:person.013430524457.88
    99 rdf:rest rdf:nil
    100 Ncbdc54d52d7e43beb6c9ac6f3d29c434 rdf:first sg:person.015552732657.49
    101 rdf:rest N226b7feca0174badbe42f0feef96e6a3
    102 Nddb12eb7b49443f19385bb9016051e3c schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 Nf4325bd1b5e3422994b2655f424b7beb schema:name doi
    105 schema:value 10.1007/s10957-007-9165-5
    106 rdf:type schema:PropertyValue
    107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Mathematical Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Applied Mathematics
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1044187 schema:issn 0022-3239
    114 1573-2878
    115 schema:name Journal of Optimization Theory and Applications
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.011306316257.92 schema:affiliation grid-institutes:grid.21940.3e
    119 schema:familyName Ciarcià
    120 schema:givenName M.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306316257.92
    122 rdf:type schema:Person
    123 sg:person.013430524457.88 schema:affiliation grid-institutes:grid.419085.1
    124 schema:familyName Weeks
    125 schema:givenName M. W.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430524457.88
    127 rdf:type schema:Person
    128 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
    129 schema:familyName Miele
    130 schema:givenName A.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
    132 rdf:type schema:Person
    133 sg:pub.10.1007/bf00927913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010952160
    134 https://doi.org/10.1007/bf00927913
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf00932781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017158292
    137 https://doi.org/10.1007/bf00932781
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf00933463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007322541
    140 https://doi.org/10.1007/bf00933463
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf00935401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004726016
    143 https://doi.org/10.1007/bf00935401
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf00937371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008341596
    146 https://doi.org/10.1007/bf00937371
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s10957-006-9055-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037465021
    149 https://doi.org/10.1007/s10957-006-9055-2
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1023/a:1022114117273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677003
    152 https://doi.org/10.1023/a:1022114117273
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1023/a:1022154001343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020008711
    155 https://doi.org/10.1023/a:1022154001343
    156 rdf:type schema:CreativeWork
    157 grid-institutes:grid.21940.3e schema:alternateName Aero-Astronautics Group, Rice University, Houston, TX, USA
    158 schema:name Aero-Astronautics Group, Rice University, Houston, TX, USA
    159 rdf:type schema:Organization
    160 grid-institutes:grid.419085.1 schema:alternateName Aeroscience and Flight Mechanics Division, NASA-Johnson Space Center, Houston, TX, USA
    161 schema:name Aeroscience and Flight Mechanics Division, NASA-Johnson Space Center, Houston, TX, USA
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...