Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-04

AUTHORS

A. Miele, T. Wang

ABSTRACT

The best strategy for collision avoidance under emergency conditions is to maximize wrt the controls the timewise minimum distance between the host ship and the intruder ship. In a restricted waterway area, two main constraints must be satisfied: the lateral deviation of the host ship from the original course is to be contained within certain limits; the longitudinal distance covered by the host ship is to be subject to a prescribed bound. At the maximin point of the encounter, the time derivative of the relative distance vanishes; this yields an inner boundary condition (orthogonality between the relative position vector and the relative velocity vector) separating the main phases of the maneuver: the avoidance and recovery phases. In this way, the optimal trajectory problem (a Chebyshev problem) can be converted into a Bolza problem with an inner boundary condition. Numerical solutions are obtained via the multiple-subarc sequential gradient-restoration algorithm (SGRA).Because the optimal trajectory is not suitable for real-time implementation, a guidance scheme approximating the optimal trajectory in real time is to be developed. For ship collision avoidance, the optimal trajectory results show that the rudder angle time history has a bang-bang form characterized by the alternation of saturated control subarcs of opposite signs joined by rapid transitions. Just as the optimal trajectory can be partitioned into three phases (avoidance phase, recovery phase, steady phase), a guidance trajectory can be constructed in the same way. For the avoidance and recovery phases, use of decomposition techniques leads to an algorithm computing the time lengths of these phases in real time. For the steady phase, a feedback control scheme is used to maneuver the ship steadily. Numerical results are presented. More... »

PAGES

1-21

References to SciGraph publications

  • 1997-04. Collision Avoidance by a Ship with a Moving Obstacle: Computation of Feasible Command Strategies in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1988-01. Time optimal control computation with application to ship steering in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2005-01. Maximin Approach to the Ship Collision Avoidance Problem via Multiple-Subarc Sequential Gradient-Restoration Algorithm in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2003-01. Multiple-Subarc Gradient-Restoration Algorithm, Part 2: Application to a Multistage Launch Vehicle Design in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 1998-05. Optimal Control of a Ship for a Course-Changing Maneuver in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2003-01. Multiple-Subarc Gradient-Restoration Algorithm, Part 1: Algorithm Structure in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 1993-06. On the control and guidance of the motion of an immersed body: Some problems in stochastic control in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10957-006-9051-6

    DOI

    http://dx.doi.org/10.1007/s10957-006-9051-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027600686


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Electrical and Electronic Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miele", 
            "givenName": "A.", 
            "id": "sg:person.015552732657.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aero-Astronautics Group, Rice University, Houston, Texas, USA", 
              "id": "http://www.grid.ac/institutes/grid.21940.3e", 
              "name": [
                "Aero-Astronautics Group, Rice University, Houston, Texas, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "T.", 
            "id": "sg:person.014414570607.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1022154001343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020008711", 
              "https://doi.org/10.1023/a:1022154001343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022693600078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024125529", 
              "https://doi.org/10.1023/a:1022693600078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00940453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007878986", 
              "https://doi.org/10.1007/bf00940453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022674516570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925605", 
              "https://doi.org/10.1023/a:1022674516570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00938530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042215967", 
              "https://doi.org/10.1007/bf00938530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-004-6464-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030995432", 
              "https://doi.org/10.1007/s10957-004-6464-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021796501467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043428395", 
              "https://doi.org/10.1023/a:1021796501467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021775722287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016603230", 
              "https://doi.org/10.1023/a:1021775722287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022114117273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022677003", 
              "https://doi.org/10.1023/a:1022114117273"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-04", 
        "datePublishedReg": "2006-04-01", 
        "description": "The best strategy for collision avoidance under emergency conditions is to maximize wrt the controls the timewise minimum distance between the host ship and the intruder ship. In a restricted waterway area, two main constraints must be satisfied: the lateral deviation of the host ship from the original course is to be contained within certain limits; the longitudinal distance covered by the host ship is to be subject to a prescribed bound. At the maximin point of the encounter, the time derivative of the relative distance vanishes; this yields an inner boundary condition (orthogonality between the relative position vector and the relative velocity vector) separating the main phases of the maneuver: the avoidance and recovery phases. In this way, the optimal trajectory problem (a Chebyshev problem) can be converted into a Bolza problem with an inner boundary condition. Numerical solutions are obtained via the multiple-subarc sequential gradient-restoration algorithm (SGRA).Because the optimal trajectory is not suitable for real-time implementation, a guidance scheme approximating the optimal trajectory in real time is to be developed. For ship collision avoidance, the optimal trajectory results show that the rudder angle time history has a bang-bang form characterized by the alternation of saturated control subarcs of opposite signs joined by rapid transitions. Just as the optimal trajectory can be partitioned into three phases (avoidance phase, recovery phase, steady phase), a guidance trajectory can be constructed in the same way. For the avoidance and recovery phases, use of decomposition techniques leads to an algorithm computing the time lengths of these phases in real time. For the steady phase, a feedback control scheme is used to maneuver the ship steadily. Numerical results are presented.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10957-006-9051-6", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044187", 
            "issn": [
              "0022-3239", 
              "1573-2878"
            ], 
            "name": "Journal of Optimization Theory and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "129"
          }
        ], 
        "keywords": [
          "host ship", 
          "inner boundary conditions", 
          "boundary conditions", 
          "collision avoidance", 
          "optimal trajectories", 
          "feedback control scheme", 
          "real-time implementation", 
          "guidance scheme", 
          "control scheme", 
          "time histories", 
          "real time", 
          "optimal trajectory results", 
          "optimal trajectory problem", 
          "sequential gradient-restoration algorithm", 
          "numerical results", 
          "waterway area", 
          "numerical solution", 
          "ship", 
          "steady phase", 
          "trajectory problem", 
          "guidance trajectories", 
          "longitudinal distance", 
          "main phase", 
          "time derivative", 
          "decomposition technique", 
          "emergency conditions", 
          "certain limits", 
          "lateral deviation", 
          "phase", 
          "ship collision avoidance", 
          "multiple-subarc sequential gradient-restoration algorithm", 
          "gradient-restoration algorithm", 
          "main constraints", 
          "scheme", 
          "time length", 
          "relative distance", 
          "conditions", 
          "trajectories", 
          "opposite sign", 
          "trajectory results", 
          "algorithm", 
          "distance", 
          "solution", 
          "results", 
          "problem", 
          "rapid transition", 
          "original course", 
          "time", 
          "technique", 
          "minimum distance", 
          "deviation", 
          "maneuvers", 
          "limit", 
          "recovery phase", 
          "constraints", 
          "Bolza problem", 
          "implementation", 
          "length", 
          "point", 
          "control", 
          "way", 
          "transition", 
          "avoidance", 
          "area", 
          "same way", 
          "use", 
          "best strategy", 
          "bang-bang form", 
          "strategies", 
          "wrt", 
          "form", 
          "prescribed", 
          "subarcs", 
          "alternation", 
          "derivatives", 
          "course", 
          "signs", 
          "history", 
          "encounters"
        ], 
        "name": "Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance", 
        "pagination": "1-21", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027600686"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10957-006-9051-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10957-006-9051-6", 
          "https://app.dimensions.ai/details/publication/pub.1027600686"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_411.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10957-006-9051-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-006-9051-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-006-9051-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-006-9051-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-006-9051-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      21 PREDICATES      116 URIs      96 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10957-006-9051-6 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:0103
    4 anzsrc-for:09
    5 anzsrc-for:0906
    6 schema:author N7d619b0f9e1c42e8b448f61e3807ccc0
    7 schema:citation sg:pub.10.1007/bf00938530
    8 sg:pub.10.1007/bf00940453
    9 sg:pub.10.1007/s10957-004-6464-y
    10 sg:pub.10.1023/a:1021775722287
    11 sg:pub.10.1023/a:1021796501467
    12 sg:pub.10.1023/a:1022114117273
    13 sg:pub.10.1023/a:1022154001343
    14 sg:pub.10.1023/a:1022674516570
    15 sg:pub.10.1023/a:1022693600078
    16 schema:datePublished 2006-04
    17 schema:datePublishedReg 2006-04-01
    18 schema:description The best strategy for collision avoidance under emergency conditions is to maximize wrt the controls the timewise minimum distance between the host ship and the intruder ship. In a restricted waterway area, two main constraints must be satisfied: the lateral deviation of the host ship from the original course is to be contained within certain limits; the longitudinal distance covered by the host ship is to be subject to a prescribed bound. At the maximin point of the encounter, the time derivative of the relative distance vanishes; this yields an inner boundary condition (orthogonality between the relative position vector and the relative velocity vector) separating the main phases of the maneuver: the avoidance and recovery phases. In this way, the optimal trajectory problem (a Chebyshev problem) can be converted into a Bolza problem with an inner boundary condition. Numerical solutions are obtained via the multiple-subarc sequential gradient-restoration algorithm (SGRA).Because the optimal trajectory is not suitable for real-time implementation, a guidance scheme approximating the optimal trajectory in real time is to be developed. For ship collision avoidance, the optimal trajectory results show that the rudder angle time history has a bang-bang form characterized by the alternation of saturated control subarcs of opposite signs joined by rapid transitions. Just as the optimal trajectory can be partitioned into three phases (avoidance phase, recovery phase, steady phase), a guidance trajectory can be constructed in the same way. For the avoidance and recovery phases, use of decomposition techniques leads to an algorithm computing the time lengths of these phases in real time. For the steady phase, a feedback control scheme is used to maneuver the ship steadily. Numerical results are presented.
    19 schema:genre article
    20 schema:isAccessibleForFree false
    21 schema:isPartOf Na8ac6b15786147c39a7233573610c86b
    22 Nbfeb1dd0fc854faa8d1bb3cc5de7b43b
    23 sg:journal.1044187
    24 schema:keywords Bolza problem
    25 algorithm
    26 alternation
    27 area
    28 avoidance
    29 bang-bang form
    30 best strategy
    31 boundary conditions
    32 certain limits
    33 collision avoidance
    34 conditions
    35 constraints
    36 control
    37 control scheme
    38 course
    39 decomposition technique
    40 derivatives
    41 deviation
    42 distance
    43 emergency conditions
    44 encounters
    45 feedback control scheme
    46 form
    47 gradient-restoration algorithm
    48 guidance scheme
    49 guidance trajectories
    50 history
    51 host ship
    52 implementation
    53 inner boundary conditions
    54 lateral deviation
    55 length
    56 limit
    57 longitudinal distance
    58 main constraints
    59 main phase
    60 maneuvers
    61 minimum distance
    62 multiple-subarc sequential gradient-restoration algorithm
    63 numerical results
    64 numerical solution
    65 opposite sign
    66 optimal trajectories
    67 optimal trajectory problem
    68 optimal trajectory results
    69 original course
    70 phase
    71 point
    72 prescribed
    73 problem
    74 rapid transition
    75 real time
    76 real-time implementation
    77 recovery phase
    78 relative distance
    79 results
    80 same way
    81 scheme
    82 sequential gradient-restoration algorithm
    83 ship
    84 ship collision avoidance
    85 signs
    86 solution
    87 steady phase
    88 strategies
    89 subarcs
    90 technique
    91 time
    92 time derivative
    93 time histories
    94 time length
    95 trajectories
    96 trajectory problem
    97 trajectory results
    98 transition
    99 use
    100 waterway area
    101 way
    102 wrt
    103 schema:name Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance
    104 schema:pagination 1-21
    105 schema:productId N05b488e5a2554489a8f2132a6a2b012f
    106 N9c0469dbc71e43ddb93295fa42809b06
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027600686
    108 https://doi.org/10.1007/s10957-006-9051-6
    109 schema:sdDatePublished 2022-11-24T20:52
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher Na40fccba587944daa890150ab9a2bfa7
    112 schema:url https://doi.org/10.1007/s10957-006-9051-6
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N05b488e5a2554489a8f2132a6a2b012f schema:name dimensions_id
    117 schema:value pub.1027600686
    118 rdf:type schema:PropertyValue
    119 N7d619b0f9e1c42e8b448f61e3807ccc0 rdf:first sg:person.015552732657.49
    120 rdf:rest N853ee6beeff24916b169aca17286162a
    121 N853ee6beeff24916b169aca17286162a rdf:first sg:person.014414570607.44
    122 rdf:rest rdf:nil
    123 N9c0469dbc71e43ddb93295fa42809b06 schema:name doi
    124 schema:value 10.1007/s10957-006-9051-6
    125 rdf:type schema:PropertyValue
    126 Na40fccba587944daa890150ab9a2bfa7 schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 Na8ac6b15786147c39a7233573610c86b schema:issueNumber 1
    129 rdf:type schema:PublicationIssue
    130 Nbfeb1dd0fc854faa8d1bb3cc5de7b43b schema:volumeNumber 129
    131 rdf:type schema:PublicationVolume
    132 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Mathematical Sciences
    134 rdf:type schema:DefinedTerm
    135 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Applied Mathematics
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Numerical and Computational Mathematics
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Engineering
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Electrical and Electronic Engineering
    146 rdf:type schema:DefinedTerm
    147 sg:journal.1044187 schema:issn 0022-3239
    148 1573-2878
    149 schema:name Journal of Optimization Theory and Applications
    150 schema:publisher Springer Nature
    151 rdf:type schema:Periodical
    152 sg:person.014414570607.44 schema:affiliation grid-institutes:grid.21940.3e
    153 schema:familyName Wang
    154 schema:givenName T.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014414570607.44
    156 rdf:type schema:Person
    157 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
    158 schema:familyName Miele
    159 schema:givenName A.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
    161 rdf:type schema:Person
    162 sg:pub.10.1007/bf00938530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042215967
    163 https://doi.org/10.1007/bf00938530
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bf00940453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007878986
    166 https://doi.org/10.1007/bf00940453
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s10957-004-6464-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030995432
    169 https://doi.org/10.1007/s10957-004-6464-y
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1023/a:1021775722287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016603230
    172 https://doi.org/10.1023/a:1021775722287
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1023/a:1021796501467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043428395
    175 https://doi.org/10.1023/a:1021796501467
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1023/a:1022114117273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677003
    178 https://doi.org/10.1023/a:1022114117273
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1023/a:1022154001343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020008711
    181 https://doi.org/10.1023/a:1022154001343
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1023/a:1022674516570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925605
    184 https://doi.org/10.1023/a:1022674516570
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1023/a:1022693600078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024125529
    187 https://doi.org/10.1023/a:1022693600078
    188 rdf:type schema:CreativeWork
    189 grid-institutes:grid.21940.3e schema:alternateName Aero-Astronautics Group, Rice University, Houston, Texas, USA
    190 schema:name Aero-Astronautics Group, Rice University, Houston, Texas, USA
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...