Reflections on the Hohmann Transfer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-11

AUTHORS

A. Miele, M. Ciarcià, J. Mathwig

ABSTRACT

Walter Hohmann was a civil engineer who studied orbital maneuvers in his spare time. In 1925, he published an important book (Ref. 1) containing his main result, namely, that the most economical transfer from a circular orbit to another circular orbit is achieved via an elliptical trajectory bitangent to the terminal orbits. With the advent of the space program some three decades later, the Hohmann transfer maneuver became the most fundamental maneuver in space.In this work, we present a complete study of the Hohmann transfer maneuver. After revisiting its known properties, we present a number of supplementary properties which are essential to the qualitative understanding of the maneuver. Also, we present a simple analytical proof of the optimality of the Hohmann transfer and complement it with a numerical study via the sequential gradient-restoration algorithm. Finally, as an application, we present a numerical study of the transfer of a spacecraft from the Earth orbit around the Sun to another planetary orbit around the Sun for both the case of an ascending transfer (orbits of Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto) and the case of a descending transfer (orbits of Mercury and Venus). More... »

PAGES

233-253

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10957-004-5147-z

DOI

http://dx.doi.org/10.1007/s10957-004-5147-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001300307


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aero-Astronautics Group, Rice University, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Aero-Astronautics Group, Rice University, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miele", 
        "givenName": "A.", 
        "id": "sg:person.015552732657.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aero-Astronautics Group, Rice University, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Aero-Astronautics Group, Rice University, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciarci\u00e0", 
        "givenName": "M.", 
        "id": "sg:person.011306316257.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306316257.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aero-Astronautics Group, Rice University, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Aero-Astronautics Group, Rice University, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathwig", 
        "givenName": "J.", 
        "id": "sg:person.015640115644.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640115644.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03546276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130303714", 
          "https://doi.org/10.1007/bf03546276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00927947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025405137", 
          "https://doi.org/10.1007/bf00927947"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-11", 
    "datePublishedReg": "2004-11-01", 
    "description": "Walter Hohmann was a civil engineer who studied orbital maneuvers in his spare time. In 1925, he published an important book (Ref. 1) containing his main result, namely, that the most economical transfer from a circular orbit to another circular orbit is achieved via an elliptical trajectory bitangent to the terminal orbits. With the advent of the space program some three decades later, the Hohmann transfer maneuver became the most fundamental maneuver in space.In this work, we present a complete study of the Hohmann transfer maneuver. After revisiting its known properties, we present a number of supplementary properties which are essential to the qualitative understanding of the maneuver. Also, we present a simple analytical proof of the optimality of the Hohmann transfer and complement it with a numerical study via the sequential gradient-restoration algorithm. Finally, as an application, we present a numerical study of the transfer of a spacecraft from the Earth orbit around the Sun to another planetary orbit around the Sun for both the case of an ascending transfer (orbits of Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto) and the case of a descending transfer (orbits of Mercury and Venus).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10957-004-5147-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044187", 
        "issn": [
          "0022-3239", 
          "1573-2878"
        ], 
        "name": "Journal of Optimization Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "123"
      }
    ], 
    "keywords": [
      "circular orbit", 
      "planetary orbits", 
      "Earth orbit", 
      "economical transfer", 
      "orbit", 
      "Sun", 
      "Hohmann transfer", 
      "qualitative understanding", 
      "transfer maneuvers", 
      "orbital maneuvers", 
      "spacecraft", 
      "numerical study", 
      "space program", 
      "complete study", 
      "transfer", 
      "fundamental maneuvers", 
      "properties", 
      "analytical proof", 
      "terminal orbits", 
      "reflection", 
      "space", 
      "applications", 
      "supplementary properties", 
      "proof", 
      "work", 
      "time", 
      "results", 
      "cases", 
      "main results", 
      "advent", 
      "Hohmann", 
      "sequential gradient-restoration algorithm", 
      "understanding", 
      "study", 
      "number", 
      "gradient-restoration algorithm", 
      "decades", 
      "algorithm", 
      "bitangents", 
      "engineers", 
      "important book", 
      "program", 
      "maneuvers", 
      "book", 
      "spare time", 
      "optimality", 
      "civil engineers"
    ], 
    "name": "Reflections on the Hohmann Transfer", 
    "pagination": "233-253", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001300307"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10957-004-5147-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10957-004-5147-z", 
      "https://app.dimensions.ai/details/publication/pub.1001300307"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_377.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10957-004-5147-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10957-004-5147-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10957-004-5147-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10957-004-5147-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10957-004-5147-z'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      77 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10957-004-5147-z schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0103
4 anzsrc-for:09
5 anzsrc-for:0906
6 schema:author N6f20c4e3f6cf45a2a6852c8dffcc4b90
7 schema:citation sg:pub.10.1007/bf00927947
8 sg:pub.10.1007/bf03546276
9 schema:datePublished 2004-11
10 schema:datePublishedReg 2004-11-01
11 schema:description Walter Hohmann was a civil engineer who studied orbital maneuvers in his spare time. In 1925, he published an important book (Ref. 1) containing his main result, namely, that the most economical transfer from a circular orbit to another circular orbit is achieved via an elliptical trajectory bitangent to the terminal orbits. With the advent of the space program some three decades later, the Hohmann transfer maneuver became the most fundamental maneuver in space.In this work, we present a complete study of the Hohmann transfer maneuver. After revisiting its known properties, we present a number of supplementary properties which are essential to the qualitative understanding of the maneuver. Also, we present a simple analytical proof of the optimality of the Hohmann transfer and complement it with a numerical study via the sequential gradient-restoration algorithm. Finally, as an application, we present a numerical study of the transfer of a spacecraft from the Earth orbit around the Sun to another planetary orbit around the Sun for both the case of an ascending transfer (orbits of Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto) and the case of a descending transfer (orbits of Mercury and Venus).
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N0559a23ff5ff4cf991c60ba2445e5b8d
15 Nb6d5291933cc42c19b47aa5726935128
16 sg:journal.1044187
17 schema:keywords Earth orbit
18 Hohmann
19 Hohmann transfer
20 Sun
21 advent
22 algorithm
23 analytical proof
24 applications
25 bitangents
26 book
27 cases
28 circular orbit
29 civil engineers
30 complete study
31 decades
32 economical transfer
33 engineers
34 fundamental maneuvers
35 gradient-restoration algorithm
36 important book
37 main results
38 maneuvers
39 number
40 numerical study
41 optimality
42 orbit
43 orbital maneuvers
44 planetary orbits
45 program
46 proof
47 properties
48 qualitative understanding
49 reflection
50 results
51 sequential gradient-restoration algorithm
52 space
53 space program
54 spacecraft
55 spare time
56 study
57 supplementary properties
58 terminal orbits
59 time
60 transfer
61 transfer maneuvers
62 understanding
63 work
64 schema:name Reflections on the Hohmann Transfer
65 schema:pagination 233-253
66 schema:productId N9c8f1a817d194c63bdf287654d227042
67 Nfb0b05f30387427a940201e290155bb2
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001300307
69 https://doi.org/10.1007/s10957-004-5147-z
70 schema:sdDatePublished 2022-12-01T06:24
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N670497b2dee54463847e99378925147f
73 schema:url https://doi.org/10.1007/s10957-004-5147-z
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0559a23ff5ff4cf991c60ba2445e5b8d schema:volumeNumber 123
78 rdf:type schema:PublicationVolume
79 N5580a5ebe3e24c63ae717488dab58146 rdf:first sg:person.015640115644.55
80 rdf:rest rdf:nil
81 N670497b2dee54463847e99378925147f schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N6f20c4e3f6cf45a2a6852c8dffcc4b90 rdf:first sg:person.015552732657.49
84 rdf:rest Nb4ae5a04c4a240a4b6edd42211830710
85 N9c8f1a817d194c63bdf287654d227042 schema:name doi
86 schema:value 10.1007/s10957-004-5147-z
87 rdf:type schema:PropertyValue
88 Nb4ae5a04c4a240a4b6edd42211830710 rdf:first sg:person.011306316257.92
89 rdf:rest N5580a5ebe3e24c63ae717488dab58146
90 Nb6d5291933cc42c19b47aa5726935128 schema:issueNumber 2
91 rdf:type schema:PublicationIssue
92 Nfb0b05f30387427a940201e290155bb2 schema:name dimensions_id
93 schema:value pub.1001300307
94 rdf:type schema:PropertyValue
95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
96 schema:name Mathematical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
99 schema:name Applied Mathematics
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
102 schema:name Numerical and Computational Mathematics
103 rdf:type schema:DefinedTerm
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
108 schema:name Electrical and Electronic Engineering
109 rdf:type schema:DefinedTerm
110 sg:journal.1044187 schema:issn 0022-3239
111 1573-2878
112 schema:name Journal of Optimization Theory and Applications
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:person.011306316257.92 schema:affiliation grid-institutes:grid.21940.3e
116 schema:familyName Ciarcià
117 schema:givenName M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011306316257.92
119 rdf:type schema:Person
120 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
121 schema:familyName Miele
122 schema:givenName A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
124 rdf:type schema:Person
125 sg:person.015640115644.55 schema:affiliation grid-institutes:grid.21940.3e
126 schema:familyName Mathwig
127 schema:givenName J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640115644.55
129 rdf:type schema:Person
130 sg:pub.10.1007/bf00927947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025405137
131 https://doi.org/10.1007/bf00927947
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf03546276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130303714
134 https://doi.org/10.1007/bf03546276
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.21940.3e schema:alternateName Aero-Astronautics Group, Rice University, Texas, USA
137 schema:name Aero-Astronautics Group, Rice University, Texas, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...