The Fully Frustrated XY Model Revisited: A New Universality Class View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-20

AUTHORS

A. B. Lima, L. A. S. Mól, B. V. Costa

ABSTRACT

The two-dimensional (2d) fully frustrated Planar Rotator model on a square lattice has been the subject of a long controversy due to the simultaneous Z2 and O(2) symmetry existing in the model. The O(2) symmetry being responsible for the Berezinskii–Kosterlitz–Thouless transition (BKT) while the Z2 drives an Ising-like transition. There are arguments supporting two possible scenarios, one advocating that the loss of Ising and BKT order take place at the same temperature Tt and the other that the Z2 transition occurs at a higher temperature than the BKT one. In the first case an immediate consequence is that this model is in a new universality class. Most of the studies take hand of some order parameter like the stiffness, Binder’s cumulant or magnetization to obtain the transition temperature. Considering that the transition temperatures are obtained, in general, as an average over the estimates taken about several of those quantities, it is difficult to decide if they are describing the same or slightly separate transitions. In this paper we describe an iterative method based on the knowledge of the complex zeros of the energy probability distribution to study the critical behavior of the system. The method is general with advantages over most conventional techniques since it does not need to identify any order parameter a priori. The critical temperature and exponents can be obtained with good precision. We apply the method to study the Fully Frustrated Planar Rotator (FFPR) and the Anisotropic Heisenberg (FFXY) models in two dimensions. We show that both models are in a new universality class with TPR=0.45286(32) and TXY=0.36916(16) respectively and the transition exponent ν=0.824(30) (1ν=1.22(4)). More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-019-02271-x

DOI

http://dx.doi.org/10.1007/s10955-019-02271-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112897475


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidade Federal do Tri\u00e2ngulo Mineiro", 
          "id": "https://www.grid.ac/institutes/grid.411281.f", 
          "name": [
            "Departamento de F\u00edsica Aplicada, Universidade Federal do Tri\u00e2ngulo Mineiro, Uberaba, Minas Gerais, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lima", 
        "givenName": "A. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Minas Gerais", 
          "id": "https://www.grid.ac/institutes/grid.8430.f", 
          "name": [
            "Laborat\u00f3rio de Simulac\u00e3o, Departamento de F\u00edsica, ICEx Universidade Federal de Minas Gerais, 31720-901, Belo Horizonte, Minas Gerais, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00f3l", 
        "givenName": "L. A. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Minas Gerais", 
          "id": "https://www.grid.ac/institutes/grid.8430.f", 
          "name": [
            "Laborat\u00f3rio de Simulac\u00e3o, Departamento de F\u00edsica, ICEx Universidade Federal de Minas Gerais, 31720-901, Belo Horizonte, Minas Gerais, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costa", 
        "givenName": "B. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0921-4526(96)00204-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000215370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.2758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003699157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.2758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003699157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.022601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004440363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.022601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004440363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015184910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.7438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015184910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021220990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021220990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.7402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026870162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.7402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026870162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2016.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029885308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2005.05.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035953624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/12/p12002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042468713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/12/p12002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042468713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(96)00642-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043510633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1729945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057796366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/10/10/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058956187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/10/23/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058956571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/6/7/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058966973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/24/5/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059072026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.65.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.65.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.87.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.87.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.9267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060550278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.9267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060550278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.2438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060555163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.2438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060555163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.15184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.15184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.3317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.3317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.5183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.5183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.1195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.1195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.1090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.1090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.1224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2017.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084068440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090806807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/921/1/012004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092802204"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-20", 
    "datePublishedReg": "2019-03-20", 
    "description": "The two-dimensional (2d) fully frustrated Planar Rotator model on a square lattice has been the subject of a long controversy due to the simultaneous Z2 and O(2) symmetry existing in the model. The O(2) symmetry being responsible for the Berezinskii\u2013Kosterlitz\u2013Thouless transition (BKT) while the Z2 drives an Ising-like transition. There are arguments supporting two possible scenarios, one advocating that the loss of Ising and BKT order take place at the same temperature Tt and the other that the Z2 transition occurs at a higher temperature than the BKT one. In the first case an immediate consequence is that this model is in a new universality class. Most of the studies take hand of some order parameter like the stiffness, Binder\u2019s cumulant or magnetization to obtain the transition temperature. Considering that the transition temperatures are obtained, in general, as an average over the estimates taken about several of those quantities, it is difficult to decide if they are describing the same or slightly separate transitions. In this paper we describe an iterative method based on the knowledge of the complex zeros of the energy probability distribution to study the critical behavior of the system. The method is general with advantages over most conventional techniques since it does not need to identify any order parameter a priori. The critical temperature and exponents can be obtained with good precision. We apply the method to study the Fully Frustrated Planar Rotator (FFPR) and the Anisotropic Heisenberg (FFXY) models in two dimensions. We show that both models are in a new universality class with TPR=0.45286(32) and TXY=0.36916(16) respectively and the transition exponent \u03bd=0.824(30) (1\u03bd=1.22(4)).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-019-02271-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "The Fully Frustrated XY Model Revisited: A New Universality Class", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4a40d3647d454afb2727a7918b67ac25ea78496cc6ef2d79f7e018ae8de9eb2e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-019-02271-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112897475"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-019-02271-x", 
      "https://app.dimensions.ai/details/publication/pub.1112897475"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70028_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10955-019-02271-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-019-02271-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-019-02271-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-019-02271-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-019-02271-x'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      59 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-019-02271-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2b3d5a4c997e435894c5d35bdeab0a14
4 schema:citation https://doi.org/10.1016/0921-4526(96)00204-9
5 https://doi.org/10.1016/j.cpc.2016.08.016
6 https://doi.org/10.1016/j.cpc.2017.03.003
7 https://doi.org/10.1016/j.jmmm.2005.05.035
8 https://doi.org/10.1016/j.physa.2017.07.010
9 https://doi.org/10.1016/s0550-3213(96)00642-6
10 https://doi.org/10.1063/1.1729945
11 https://doi.org/10.1088/0022-3719/10/10/014
12 https://doi.org/10.1088/0022-3719/10/23/013
13 https://doi.org/10.1088/0022-3719/6/7/010
14 https://doi.org/10.1088/0305-4470/24/5/004
15 https://doi.org/10.1088/1742-5468/2005/12/p12002
16 https://doi.org/10.1088/1742-6596/921/1/012004
17 https://doi.org/10.1103/physrev.65.117
18 https://doi.org/10.1103/physrev.87.404
19 https://doi.org/10.1103/physrevb.27.598
20 https://doi.org/10.1103/physrevb.39.9267
21 https://doi.org/10.1103/physrevb.42.2438
22 https://doi.org/10.1103/physrevb.48.7438
23 https://doi.org/10.1103/physrevb.49.15184
24 https://doi.org/10.1103/physrevb.49.3317
25 https://doi.org/10.1103/physrevb.50.1061
26 https://doi.org/10.1103/physrevb.52.7402
27 https://doi.org/10.1103/physreve.58.5183
28 https://doi.org/10.1103/physreve.90.022601
29 https://doi.org/10.1103/physrevlett.17.1133
30 https://doi.org/10.1103/physrevlett.61.2635
31 https://doi.org/10.1103/physrevlett.63.1195
32 https://doi.org/10.1103/physrevlett.66.1090
33 https://doi.org/10.1103/physrevlett.68.1224
34 https://doi.org/10.1103/physrevlett.69.3382
35 https://doi.org/10.1103/physrevlett.75.2758
36 https://doi.org/10.1103/physrevlett.77.4849
37 https://doi.org/10.1103/revmodphys.59.1001
38 https://doi.org/10.1103/revmodphys.70.653
39 schema:datePublished 2019-03-20
40 schema:datePublishedReg 2019-03-20
41 schema:description The two-dimensional (2d) fully frustrated Planar Rotator model on a square lattice has been the subject of a long controversy due to the simultaneous Z2 and O(2) symmetry existing in the model. The O(2) symmetry being responsible for the Berezinskii–Kosterlitz–Thouless transition (BKT) while the Z2 drives an Ising-like transition. There are arguments supporting two possible scenarios, one advocating that the loss of Ising and BKT order take place at the same temperature Tt and the other that the Z2 transition occurs at a higher temperature than the BKT one. In the first case an immediate consequence is that this model is in a new universality class. Most of the studies take hand of some order parameter like the stiffness, Binder’s cumulant or magnetization to obtain the transition temperature. Considering that the transition temperatures are obtained, in general, as an average over the estimates taken about several of those quantities, it is difficult to decide if they are describing the same or slightly separate transitions. In this paper we describe an iterative method based on the knowledge of the complex zeros of the energy probability distribution to study the critical behavior of the system. The method is general with advantages over most conventional techniques since it does not need to identify any order parameter a priori. The critical temperature and exponents can be obtained with good precision. We apply the method to study the Fully Frustrated Planar Rotator (FFPR) and the Anisotropic Heisenberg (FFXY) models in two dimensions. We show that both models are in a new universality class with TPR=0.45286(32) and TXY=0.36916(16) respectively and the transition exponent ν=0.824(30) (1ν=1.22(4)).
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf sg:journal.1040979
46 schema:name The Fully Frustrated XY Model Revisited: A New Universality Class
47 schema:pagination 1-12
48 schema:productId N9a84685cb88e4d7d8d21abe22b9fd31d
49 Nac3d15a4e3064b76b61f0c4a2fcffc99
50 Nf48b4f000b804c8dbf281be3be66104f
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112897475
52 https://doi.org/10.1007/s10955-019-02271-x
53 schema:sdDatePublished 2019-04-11T12:36
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N8ac7396b58d848a5913e3181686cf0da
56 schema:url https://link.springer.com/10.1007%2Fs10955-019-02271-x
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N2b3d5a4c997e435894c5d35bdeab0a14 rdf:first Ne96c5cafbae3447fbe8ab76af163d1da
61 rdf:rest N59b597e6efdb4252a9fa190197d6244f
62 N4058fdc4367f4395b97b525982bd1ac9 schema:affiliation https://www.grid.ac/institutes/grid.8430.f
63 schema:familyName Costa
64 schema:givenName B. V.
65 rdf:type schema:Person
66 N59b597e6efdb4252a9fa190197d6244f rdf:first Ndfed4838475243e4afa9c49d3d91ebb5
67 rdf:rest Na16050713cc046e8922cecf3ac23f59b
68 N8ac7396b58d848a5913e3181686cf0da schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N9a84685cb88e4d7d8d21abe22b9fd31d schema:name doi
71 schema:value 10.1007/s10955-019-02271-x
72 rdf:type schema:PropertyValue
73 Na16050713cc046e8922cecf3ac23f59b rdf:first N4058fdc4367f4395b97b525982bd1ac9
74 rdf:rest rdf:nil
75 Nac3d15a4e3064b76b61f0c4a2fcffc99 schema:name dimensions_id
76 schema:value pub.1112897475
77 rdf:type schema:PropertyValue
78 Ndfed4838475243e4afa9c49d3d91ebb5 schema:affiliation https://www.grid.ac/institutes/grid.8430.f
79 schema:familyName Mól
80 schema:givenName L. A. S.
81 rdf:type schema:Person
82 Ne96c5cafbae3447fbe8ab76af163d1da schema:affiliation https://www.grid.ac/institutes/grid.411281.f
83 schema:familyName Lima
84 schema:givenName A. B.
85 rdf:type schema:Person
86 Nf48b4f000b804c8dbf281be3be66104f schema:name readcube_id
87 schema:value 4a40d3647d454afb2727a7918b67ac25ea78496cc6ef2d79f7e018ae8de9eb2e
88 rdf:type schema:PropertyValue
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
93 schema:name Pure Mathematics
94 rdf:type schema:DefinedTerm
95 sg:journal.1040979 schema:issn 0022-4715
96 1572-9613
97 schema:name Journal of Statistical Physics
98 rdf:type schema:Periodical
99 https://doi.org/10.1016/0921-4526(96)00204-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000215370
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.cpc.2016.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029885308
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.cpc.2017.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084068440
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.jmmm.2005.05.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035953624
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.physa.2017.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090806807
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0550-3213(96)00642-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043510633
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.1729945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057796366
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/0022-3719/10/10/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058956187
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/0022-3719/10/23/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058956571
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0022-3719/6/7/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058966973
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/0305-4470/24/5/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059072026
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/1742-5468/2005/12/p12002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042468713
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/1742-6596/921/1/012004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092802204
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrev.65.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060452328
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrev.87.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060459525
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.27.598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532573
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.39.9267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060550278
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.42.2438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060555163
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.48.7438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015184910
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.49.15184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570162
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.49.3317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570729
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.50.1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572399
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.52.7402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026870162
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreve.58.5183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060722960
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreve.90.022601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004440363
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.17.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769116
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.61.2635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798008
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.63.1195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799329
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.66.1090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802051
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.68.1224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804089
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.69.3382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805791
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.75.2758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003699157
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.77.4849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021220990
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/revmodphys.59.1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839109
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/revmodphys.70.653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839431
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.411281.f schema:alternateName Universidade Federal do Triângulo Mineiro
170 schema:name Departamento de Física Aplicada, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.8430.f schema:alternateName Universidade Federal de Minas Gerais
173 schema:name Laboratório de Simulacão, Departamento de Física, ICEx Universidade Federal de Minas Gerais, 31720-901, Belo Horizonte, Minas Gerais, Brazil
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...