Methodological and Computational Aspects of Parallel Tempering Methods in the Infinite Swapping Limit View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02

AUTHORS

Jianfeng Lu, Eric Vanden-Eijnden

ABSTRACT

A variant of the parallel tempering method is proposed in terms of a stochastic switching process for the coupled dynamics of replica configuration and temperature permutation. This formulation is shown to facilitate the analysis of the convergence properties of parallel tempering by large deviation theory, which indicates that the method should be operated in the infinite swapping limit to maximize sampling efficiency. The effective equation for the replica alone that arises in this infinite swapping limit simply involves replacing the original potential by a mixture potential. The analysis of the geometric properties of this potential offers a new perspective on the issues of how to choose of temperature ladder, and why many temperatures should typically be introduced to boost the sampling efficiency. It is also shown how to simulate the effective equation in this many temperature regime using multiscale integrators. Finally, similar ideas are also used to discuss extensions of the infinite swapping limits to the technique of simulated tempering. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-018-2210-y

DOI

http://dx.doi.org/10.1007/s10955-018-2210-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111012197


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Department of Mathematics, Department of Physics, and Department of Chemistry, Duke University, Box 90320, 27708, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Jianfeng", 
        "id": "sg:person.015373516151.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015373516151.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, 10012, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanden-Eijnden", 
        "givenName": "Eric", 
        "id": "sg:person.01124051570.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124051570.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1742-5468/2006/03/p03018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010726676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2006/03/p03018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010726676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012152274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012152274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4790706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012235878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4904890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028972669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/19/6/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036370817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(99)01123-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038215017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1605089113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038292617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/103/67003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050172418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3643325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052681212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct100281c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055423548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct100281c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055423548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100540a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055672411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2816560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057874628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2988339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057890287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3249608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057924599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.045701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.045701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.57.2607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/090771648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062856706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/110853145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062865500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.65.1604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063115726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/13-aop883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064393837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cms.2003.v1.n2.a11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072458636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cms.2007.v5.n2.a14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072458795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812819437_0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088789338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/aaa387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101325243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/16m1083748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109959351"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "A variant of the parallel tempering method is proposed in terms of a stochastic switching process for the coupled dynamics of replica configuration and temperature permutation. This formulation is shown to facilitate the analysis of the convergence properties of parallel tempering by large deviation theory, which indicates that the method should be operated in the infinite swapping limit to maximize sampling efficiency. The effective equation for the replica alone that arises in this infinite swapping limit simply involves replacing the original potential by a mixture potential. The analysis of the geometric properties of this potential offers a new perspective on the issues of how to choose of temperature ladder, and why many temperatures should typically be introduced to boost the sampling efficiency. It is also shown how to simulate the effective equation in this many temperature regime using multiscale integrators. Finally, similar ideas are also used to discuss extensions of the infinite swapping limits to the technique of simulated tempering.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-018-2210-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4851865", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4108456", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3852374", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Methodological and Computational Aspects of Parallel Tempering Methods in the Infinite Swapping Limit", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "75ae071cec570eaadf3f4aea407ce48f6ca452e87f319a4ca21adb01b1b7f8c9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-018-2210-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111012197"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-018-2210-y", 
      "https://app.dimensions.ai/details/publication/pub.1111012197"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106252_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10955-018-2210-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2210-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2210-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2210-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2210-y'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      50 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-018-2210-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf1a1fdc98d724427bd97042a09691207
4 schema:citation https://doi.org/10.1002/cpa.3160280102
5 https://doi.org/10.1016/s0009-2614(99)01123-9
6 https://doi.org/10.1021/ct100281c
7 https://doi.org/10.1021/j100540a008
8 https://doi.org/10.1063/1.2816560
9 https://doi.org/10.1063/1.2988339
10 https://doi.org/10.1063/1.3249608
11 https://doi.org/10.1063/1.3643325
12 https://doi.org/10.1063/1.4790706
13 https://doi.org/10.1063/1.4904890
14 https://doi.org/10.1073/pnas.1605089113
15 https://doi.org/10.1088/1742-5468/2006/03/p03018
16 https://doi.org/10.1088/1742-5468/aaa387
17 https://doi.org/10.1103/physreve.76.045701
18 https://doi.org/10.1103/physrevlett.57.2607
19 https://doi.org/10.1137/090771648
20 https://doi.org/10.1137/110853145
21 https://doi.org/10.1137/16m1083748
22 https://doi.org/10.1142/9789812819437_0003
23 https://doi.org/10.1143/jpsj.65.1604
24 https://doi.org/10.1209/0295-5075/103/67003
25 https://doi.org/10.1209/0295-5075/19/6/002
26 https://doi.org/10.1214/13-aop883
27 https://doi.org/10.4310/cms.2003.v1.n2.a11
28 https://doi.org/10.4310/cms.2007.v5.n2.a14
29 schema:datePublished 2019-02
30 schema:datePublishedReg 2019-02-01
31 schema:description A variant of the parallel tempering method is proposed in terms of a stochastic switching process for the coupled dynamics of replica configuration and temperature permutation. This formulation is shown to facilitate the analysis of the convergence properties of parallel tempering by large deviation theory, which indicates that the method should be operated in the infinite swapping limit to maximize sampling efficiency. The effective equation for the replica alone that arises in this infinite swapping limit simply involves replacing the original potential by a mixture potential. The analysis of the geometric properties of this potential offers a new perspective on the issues of how to choose of temperature ladder, and why many temperatures should typically be introduced to boost the sampling efficiency. It is also shown how to simulate the effective equation in this many temperature regime using multiscale integrators. Finally, similar ideas are also used to discuss extensions of the infinite swapping limits to the technique of simulated tempering.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf sg:journal.1040979
36 schema:name Methodological and Computational Aspects of Parallel Tempering Methods in the Infinite Swapping Limit
37 schema:pagination 1-19
38 schema:productId N38302057433d45fa802ca179a5b2f66a
39 N658fb3addf564200a0e1a2d1a12763bf
40 Nd3611264be7b43eaa7ec23289cd167a1
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111012197
42 https://doi.org/10.1007/s10955-018-2210-y
43 schema:sdDatePublished 2019-04-11T08:29
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Na8bc9aeddb12426ab191c0d3557df6c5
46 schema:url https://link.springer.com/10.1007%2Fs10955-018-2210-y
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N204f2994546c4ad98418bad75fee2ac5 rdf:first sg:person.01124051570.90
51 rdf:rest rdf:nil
52 N38302057433d45fa802ca179a5b2f66a schema:name readcube_id
53 schema:value 75ae071cec570eaadf3f4aea407ce48f6ca452e87f319a4ca21adb01b1b7f8c9
54 rdf:type schema:PropertyValue
55 N658fb3addf564200a0e1a2d1a12763bf schema:name doi
56 schema:value 10.1007/s10955-018-2210-y
57 rdf:type schema:PropertyValue
58 Na8bc9aeddb12426ab191c0d3557df6c5 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nd3611264be7b43eaa7ec23289cd167a1 schema:name dimensions_id
61 schema:value pub.1111012197
62 rdf:type schema:PropertyValue
63 Nf1a1fdc98d724427bd97042a09691207 rdf:first sg:person.015373516151.49
64 rdf:rest N204f2994546c4ad98418bad75fee2ac5
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
69 schema:name Statistics
70 rdf:type schema:DefinedTerm
71 sg:grant.3852374 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-018-2210-y
72 rdf:type schema:MonetaryGrant
73 sg:grant.4108456 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-018-2210-y
74 rdf:type schema:MonetaryGrant
75 sg:grant.4851865 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-018-2210-y
76 rdf:type schema:MonetaryGrant
77 sg:journal.1040979 schema:issn 0022-4715
78 1572-9613
79 schema:name Journal of Statistical Physics
80 rdf:type schema:Periodical
81 sg:person.01124051570.90 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
82 schema:familyName Vanden-Eijnden
83 schema:givenName Eric
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124051570.90
85 rdf:type schema:Person
86 sg:person.015373516151.49 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
87 schema:familyName Lu
88 schema:givenName Jianfeng
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015373516151.49
90 rdf:type schema:Person
91 https://doi.org/10.1002/cpa.3160280102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012152274
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0009-2614(99)01123-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038215017
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1021/ct100281c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055423548
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1021/j100540a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055672411
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.2816560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057874628
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.2988339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057890287
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.3249608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057924599
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.3643325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052681212
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.4790706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012235878
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.4904890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028972669
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1073/pnas.1605089113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038292617
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/1742-5468/2006/03/p03018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010726676
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/1742-5468/aaa387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101325243
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physreve.76.045701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736564
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.57.2607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794166
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1137/090771648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856706
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1137/110853145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062865500
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1137/16m1083748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109959351
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1142/9789812819437_0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088789338
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1143/jpsj.65.1604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063115726
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1209/0295-5075/103/67003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050172418
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1209/0295-5075/19/6/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036370817
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1214/13-aop883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393837
136 rdf:type schema:CreativeWork
137 https://doi.org/10.4310/cms.2003.v1.n2.a11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072458636
138 rdf:type schema:CreativeWork
139 https://doi.org/10.4310/cms.2007.v5.n2.a14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072458795
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
142 schema:name Department of Mathematics, Department of Physics, and Department of Chemistry, Duke University, Box 90320, 27708, Durham, NC, USA
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
145 schema:name Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, 10012, New York, NY, USA
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...