Fick Law and Sticky Brownian Motions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01

AUTHORS

Thu Dang Thien Nguyen

ABSTRACT

We consider an interacting particle system in the interval [1, N] with reservoirs at the boundaries. While the dynamics in the channel is the simple symmetric exclusion process, the reservoirs are also particle systems which interact with the given system by exchanging particles. In this paper we study the case where the size of each reservoir is the same as the size of the channel. We will prove that the hydrodynamic limit equation is the heat equation with boundary conditions which relate first and second spatial derivatives at the boundaries for which we will prove the existence and uniqueness of weak solutions. More... »

PAGES

1-25

References to SciGraph publications

  • 2011-09. Current Reservoirs in the Simple Exclusion Process in JOURNAL OF STATISTICAL PHYSICS
  • 2015-12. Quasi-Static Hydrodynamic Limits in JOURNAL OF STATISTICAL PHYSICS
  • 1985. Interacting Particle Systems in NONE
  • 1981-09. Nonequilibrium measures which exhibit a temperature gradient: Study of a model in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10955-018-2190-y

    DOI

    http://dx.doi.org/10.1007/s10955-018-2190-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1109891536


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Gran Sasso Science Institute", 
              "id": "https://www.grid.ac/institutes/grid.466750.6", 
              "name": [
                "Gran Sasso Science Institute, Viale Francesco Crispi, 7, 67100, L\u2019Aquila, Italy", 
                "Department of Mathematics, University of Quynhon, Quy Nhon, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nguyen", 
            "givenName": "Thu Dang Thien", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/cpa.20081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012089600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-015-1383-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022878786", 
              "https://doi.org/10.1007/s10955-015-1383-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-4149(91)90080-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029403486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-011-0326-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035756520", 
              "https://doi.org/10.1007/s10955-011-0326-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1962-0139211-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037184973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8542-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045961506", 
              "https://doi.org/10.1007/978-1-4613-8542-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8542-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045961506", 
              "https://doi.org/10.1007/978-1-4613-8542-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01941803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053040699", 
              "https://doi.org/10.1007/bf01941803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01941803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053040699", 
              "https://doi.org/10.1007/bf01941803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0502022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062845571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/13-aop865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064393820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ejp.v17-1734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064396910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3150/14-bej627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071057025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3150/14-bej628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071057026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511750854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098695467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139086967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098711816"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "We consider an interacting particle system in the interval [1, N] with reservoirs at the boundaries. While the dynamics in the channel is the simple symmetric exclusion process, the reservoirs are also particle systems which interact with the given system by exchanging particles. In this paper we study the case where the size of each reservoir is the same as the size of the channel. We will prove that the hydrodynamic limit equation is the heat equation with boundary conditions which relate first and second spatial derivatives at the boundaries for which we will prove the existence and uniqueness of weak solutions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10955-018-2190-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }
        ], 
        "name": "Fick Law and Sticky Brownian Motions", 
        "pagination": "1-25", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "909c058d63d622e8c2d0e898335e3c2b25080b05eccc642ccd026b499d2cde06"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10955-018-2190-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1109891536"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10955-018-2190-y", 
          "https://app.dimensions.ai/details/publication/pub.1109891536"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000265_0000000265/records_67370_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10955-018-2190-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2190-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2190-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2190-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2190-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      39 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10955-018-2190-y schema:about anzsrc-for:09
    2 anzsrc-for:0914
    3 schema:author N2099141257b24eba8d89e1b87dcc7261
    4 schema:citation sg:pub.10.1007/978-1-4613-8542-4
    5 sg:pub.10.1007/bf01941803
    6 sg:pub.10.1007/s10955-011-0326-4
    7 sg:pub.10.1007/s10955-015-1383-x
    8 https://doi.org/10.1002/cpa.20081
    9 https://doi.org/10.1016/0304-4149(91)90080-v
    10 https://doi.org/10.1017/cbo9780511750854
    11 https://doi.org/10.1017/cbo9781139086967
    12 https://doi.org/10.1090/s0002-9947-1962-0139211-2
    13 https://doi.org/10.1137/0502022
    14 https://doi.org/10.1214/13-aop865
    15 https://doi.org/10.1214/ejp.v17-1734
    16 https://doi.org/10.3150/14-bej627
    17 https://doi.org/10.3150/14-bej628
    18 schema:datePublished 2019-01
    19 schema:datePublishedReg 2019-01-01
    20 schema:description We consider an interacting particle system in the interval [1, N] with reservoirs at the boundaries. While the dynamics in the channel is the simple symmetric exclusion process, the reservoirs are also particle systems which interact with the given system by exchanging particles. In this paper we study the case where the size of each reservoir is the same as the size of the channel. We will prove that the hydrodynamic limit equation is the heat equation with boundary conditions which relate first and second spatial derivatives at the boundaries for which we will prove the existence and uniqueness of weak solutions.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf sg:journal.1040979
    25 schema:name Fick Law and Sticky Brownian Motions
    26 schema:pagination 1-25
    27 schema:productId N52993e88917440e9bc9023634f3f18d4
    28 N7ecb6580d4254e24acddcc21f297b707
    29 Nff2b00521d5d4223beecb0534ad6d26f
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109891536
    31 https://doi.org/10.1007/s10955-018-2190-y
    32 schema:sdDatePublished 2019-04-11T08:07
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N79d0304e13e9417894115d908316a996
    35 schema:url https://link.springer.com/10.1007%2Fs10955-018-2190-y
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N0c5ebe729bec4f09835538fa8435b71f schema:affiliation https://www.grid.ac/institutes/grid.466750.6
    40 schema:familyName Nguyen
    41 schema:givenName Thu Dang Thien
    42 rdf:type schema:Person
    43 N2099141257b24eba8d89e1b87dcc7261 rdf:first N0c5ebe729bec4f09835538fa8435b71f
    44 rdf:rest rdf:nil
    45 N52993e88917440e9bc9023634f3f18d4 schema:name doi
    46 schema:value 10.1007/s10955-018-2190-y
    47 rdf:type schema:PropertyValue
    48 N79d0304e13e9417894115d908316a996 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N7ecb6580d4254e24acddcc21f297b707 schema:name readcube_id
    51 schema:value 909c058d63d622e8c2d0e898335e3c2b25080b05eccc642ccd026b499d2cde06
    52 rdf:type schema:PropertyValue
    53 Nff2b00521d5d4223beecb0534ad6d26f schema:name dimensions_id
    54 schema:value pub.1109891536
    55 rdf:type schema:PropertyValue
    56 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Engineering
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Resources Engineering and Extractive Metallurgy
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1040979 schema:issn 0022-4715
    63 1572-9613
    64 schema:name Journal of Statistical Physics
    65 rdf:type schema:Periodical
    66 sg:pub.10.1007/978-1-4613-8542-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045961506
    67 https://doi.org/10.1007/978-1-4613-8542-4
    68 rdf:type schema:CreativeWork
    69 sg:pub.10.1007/bf01941803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053040699
    70 https://doi.org/10.1007/bf01941803
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1007/s10955-011-0326-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035756520
    73 https://doi.org/10.1007/s10955-011-0326-4
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/s10955-015-1383-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022878786
    76 https://doi.org/10.1007/s10955-015-1383-x
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1002/cpa.20081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012089600
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/0304-4149(91)90080-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1029403486
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1017/cbo9780511750854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098695467
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1017/cbo9781139086967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098711816
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1090/s0002-9947-1962-0139211-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037184973
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1137/0502022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845571
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1214/13-aop865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393820
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1214/ejp.v17-1734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064396910
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.3150/14-bej627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071057025
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.3150/14-bej628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071057026
    97 rdf:type schema:CreativeWork
    98 https://www.grid.ac/institutes/grid.466750.6 schema:alternateName Gran Sasso Science Institute
    99 schema:name Department of Mathematics, University of Quynhon, Quy Nhon, Vietnam
    100 Gran Sasso Science Institute, Viale Francesco Crispi, 7, 67100, L’Aquila, Italy
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...