Zero Temperature Limit for Directed Polymers and Inviscid Limit for Stationary Solutions of Stochastic Burgers Equation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

Yuri Bakhtin, Liying Li

ABSTRACT

We consider a space-continuous and time-discrete polymer model for positive temperature and the associated zero temperature model of last passage percolation type. In our previous work, we constructed and studied infinite-volume polymer measures and one-sided infinite minimizers for the associated variational principle, and used these objects for the study of global stationary solutions of the Burgers equation with positive or zero viscosity and random kick forcing, on the entire real line. In this paper, we prove that in the zero temperature limit, the infinite-volume polymer measures concentrate on the one-sided minimizers and that the associated global solutions of the viscous Burgers equation with random kick forcing converge to the global solutions of the inviscid equation. More... »

PAGES

1358-1397

References to SciGraph publications

  • 2006-01. Existence and Uniqueness of Stationary Solutions for 3D Navier–Stokes System with Small Random Forcing via Stochastic Cascades in JOURNAL OF STATISTICAL PHYSICS
  • 1997-06. Euclidean models of first-passage percolation in PROBABILITY THEORY AND RELATED FIELDS
  • 1991-07. Two results concerning asymptotic behavior of solutions of the Burgers equation with force in JOURNAL OF STATISTICAL PHYSICS
  • 2012-10. Busemann functions and equilibrium measures in last passage percolation models in PROBABILITY THEORY AND RELATED FIELDS
  • 2017-10. Stationary cocycles and Busemann functions for the corner growth model in PROBABILITY THEORY AND RELATED FIELDS
  • 2016-09. Variational Formulas and Cocycle solutions for Directed Polymer and Percolation Models in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2007-12. Eulerian limit for 2D Navier-Stokes equation and damped/driven KdV equation as its model in PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS
  • 2001-11. Ergodicity of the 2D Navier--Stokes Equations¶with Random Forcing in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1995. A Surface View of First-Passage Percolation in PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS
  • 2015-12. Invariant measure of scalar first-order conservation laws with stochastic forcing in PROBABILITY THEORY AND RELATED FIELDS
  • 2014-02. Busemann Functions and Infinite Geodesics in Two-Dimensional First-Passage Percolation in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2004-04. The Eulerian Limit for 2D Statistical Hydrodynamics in JOURNAL OF STATISTICAL PHYSICS
  • 2000-09. Stochastic Dissipative PDE's and Gibbs Measures in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-11. Gibbsian Dynamics and Ergodicity¶for the Stochastically Forced Navier–Stokes Equation in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-12. On Distribution of Energy and Vorticity for Solutions of 2D Navier-Stokes Equation with Small Viscosity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-01. Burgers Turbulence and Random Lagrangian Systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2017. Directed Polymers in Random Environments in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10955-018-2104-z

    DOI

    http://dx.doi.org/10.1007/s10955-018-2104-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105312999


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Courant Institute of Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.482020.c", 
              "name": [
                "Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, 10012, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bakhtin", 
            "givenName": "Yuri", 
            "id": "sg:person.01327752120.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Courant Institute of Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.482020.c", 
              "name": [
                "Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, 10012, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Liying", 
            "id": "sg:person.012176034336.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176034336.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00440-016-0729-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003161733", 
              "https://doi.org/10.1007/s00440-016-0729-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00440-016-0729-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003161733", 
              "https://doi.org/10.1007/s00440-016-0729-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200000237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004080627", 
              "https://doi.org/10.1007/s002200000237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00440-011-0363-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007699756", 
              "https://doi.org/10.1007/s00440-011-0363-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00440-011-0363-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007699756", 
              "https://doi.org/10.1007/s00440-011-0363-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:joss.0000019830.64243.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009056804", 
              "https://doi.org/10.1023/b:joss.0000019830.64243.a2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004400050105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010285167", 
              "https://doi.org/10.1007/s004400050105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004400050105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010285167", 
              "https://doi.org/10.1007/s004400050105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021004084", 
              "https://doi.org/10.1007/s002200100510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-016-2613-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024001804", 
              "https://doi.org/10.1007/s00220-016-2613-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700003473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024574361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700003473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024574361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027857142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00440-014-0599-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030390287", 
              "https://doi.org/10.1007/s00440-014-0599-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00440-014-0599-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030390287", 
              "https://doi.org/10.1007/s00440-014-0599-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002201224083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031213918", 
              "https://doi.org/10.1007/s002201224083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/16-ejp4413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031719177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01057866", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032361567", 
              "https://doi.org/10.1007/bf01057866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-002-0748-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037144685", 
              "https://doi.org/10.1007/s00220-002-0748-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-07-08736-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041069368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0577-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041711903", 
              "https://doi.org/10.1007/s00220-008-0577-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0577-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041711903", 
              "https://doi.org/10.1007/s00220-008-0577-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0081543807040098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047884006", 
              "https://doi.org/10.1134/s0081543807040098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-005-8014-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048268586", 
              "https://doi.org/10.1007/s10955-005-8014-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-005-8014-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048268586", 
              "https://doi.org/10.1007/s10955-005-8014-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-013-1875-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053073582", 
              "https://doi.org/10.1007/s00220-013-1875-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0951-7715/16/3/303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059109178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-2013-00773-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059339447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/040611896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062845139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/08-aop392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064390107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/12-aop747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064393001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/14-aop933", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064394531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/ejp.v16-875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064396836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoap/1177005426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064398026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1008956686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064402810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/121126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069397576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3150/15-bej747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071057157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4007/annals.2006.164.993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071867007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-50487-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083413452", 
              "https://doi.org/10.1007/978-3-319-50487-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/p504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098882316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9078-6_94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637221", 
              "https://doi.org/10.1007/978-3-0348-9078-6_94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/ulect/068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103642977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.21779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105306625"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "We consider a space-continuous and time-discrete polymer model for positive temperature and the associated zero temperature model of last passage percolation type. In our previous work, we constructed and studied infinite-volume polymer measures and one-sided infinite minimizers for the associated variational principle, and used these objects for the study of global stationary solutions of the Burgers equation with positive or zero viscosity and random kick forcing, on the entire real line. In this paper, we prove that in the zero temperature limit, the infinite-volume polymer measures concentrate on the one-sided minimizers and that the associated global solutions of the viscous Burgers equation with random kick forcing converge to the global solutions of the inviscid equation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10955-018-2104-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3851677", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "172"
          }
        ], 
        "name": "Zero Temperature Limit for Directed Polymers and Inviscid Limit for Stationary Solutions of Stochastic Burgers Equation", 
        "pagination": "1358-1397", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1a85edcb38faf8d115c237343c7d2402d3a6d9afbc467498156ba6cda123d085"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10955-018-2104-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105312999"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10955-018-2104-z", 
          "https://app.dimensions.ai/details/publication/pub.1105312999"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000535.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10955-018-2104-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2104-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2104-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2104-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2104-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10955-018-2104-z schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nd78e13fc2dad4b12a1c7c2f1f8ff15a9
    4 schema:citation sg:pub.10.1007/978-3-0348-9078-6_94
    5 sg:pub.10.1007/978-3-319-50487-2
    6 sg:pub.10.1007/bf01057866
    7 sg:pub.10.1007/s00220-002-0748-6
    8 sg:pub.10.1007/s00220-008-0577-3
    9 sg:pub.10.1007/s00220-013-1875-y
    10 sg:pub.10.1007/s00220-016-2613-z
    11 sg:pub.10.1007/s002200000237
    12 sg:pub.10.1007/s002200100510
    13 sg:pub.10.1007/s002201224083
    14 sg:pub.10.1007/s00440-011-0363-6
    15 sg:pub.10.1007/s00440-014-0599-z
    16 sg:pub.10.1007/s00440-016-0729-x
    17 sg:pub.10.1007/s004400050105
    18 sg:pub.10.1007/s10955-005-8014-x
    19 sg:pub.10.1023/b:joss.0000019830.64243.a2
    20 sg:pub.10.1134/s0081543807040098
    21 https://doi.org/10.1002/cpa.20061
    22 https://doi.org/10.1002/cpa.21779
    23 https://doi.org/10.1017/s0143385700003473
    24 https://doi.org/10.1088/0951-7715/16/3/303
    25 https://doi.org/10.1090/s0002-9939-07-08736-9
    26 https://doi.org/10.1090/s0894-0347-2013-00773-0
    27 https://doi.org/10.1090/ulect/068
    28 https://doi.org/10.1137/040611896
    29 https://doi.org/10.1142/p504
    30 https://doi.org/10.1214/08-aop392
    31 https://doi.org/10.1214/12-aop747
    32 https://doi.org/10.1214/14-aop933
    33 https://doi.org/10.1214/16-ejp4413
    34 https://doi.org/10.1214/aoap/1177005426
    35 https://doi.org/10.1214/aop/1008956686
    36 https://doi.org/10.1214/ejp.v16-875
    37 https://doi.org/10.2307/121126
    38 https://doi.org/10.3150/15-bej747
    39 https://doi.org/10.4007/annals.2006.164.993
    40 schema:datePublished 2018-09
    41 schema:datePublishedReg 2018-09-01
    42 schema:description We consider a space-continuous and time-discrete polymer model for positive temperature and the associated zero temperature model of last passage percolation type. In our previous work, we constructed and studied infinite-volume polymer measures and one-sided infinite minimizers for the associated variational principle, and used these objects for the study of global stationary solutions of the Burgers equation with positive or zero viscosity and random kick forcing, on the entire real line. In this paper, we prove that in the zero temperature limit, the infinite-volume polymer measures concentrate on the one-sided minimizers and that the associated global solutions of the viscous Burgers equation with random kick forcing converge to the global solutions of the inviscid equation.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N4471addf94eb440797283e2f25029a4d
    47 N7d8d9ff1a3ef4c11b4b18a88b9043a22
    48 sg:journal.1040979
    49 schema:name Zero Temperature Limit for Directed Polymers and Inviscid Limit for Stationary Solutions of Stochastic Burgers Equation
    50 schema:pagination 1358-1397
    51 schema:productId N00fb8210da8345a99612002cd06c25d1
    52 N6550ce51517f49cda88509096bccc4d5
    53 Nc805a8c1541b4bfda5e0ebc18094a323
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105312999
    55 https://doi.org/10.1007/s10955-018-2104-z
    56 schema:sdDatePublished 2019-04-11T01:12
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N9e2a8bf467304c0980f898ce474364db
    59 schema:url http://link.springer.com/10.1007%2Fs10955-018-2104-z
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N00fb8210da8345a99612002cd06c25d1 schema:name dimensions_id
    64 schema:value pub.1105312999
    65 rdf:type schema:PropertyValue
    66 N4471addf94eb440797283e2f25029a4d schema:issueNumber 5
    67 rdf:type schema:PublicationIssue
    68 N6550ce51517f49cda88509096bccc4d5 schema:name doi
    69 schema:value 10.1007/s10955-018-2104-z
    70 rdf:type schema:PropertyValue
    71 N7440bbb7e9f242fa9c3227baa8753a27 rdf:first sg:person.012176034336.00
    72 rdf:rest rdf:nil
    73 N7d8d9ff1a3ef4c11b4b18a88b9043a22 schema:volumeNumber 172
    74 rdf:type schema:PublicationVolume
    75 N9e2a8bf467304c0980f898ce474364db schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 Nc805a8c1541b4bfda5e0ebc18094a323 schema:name readcube_id
    78 schema:value 1a85edcb38faf8d115c237343c7d2402d3a6d9afbc467498156ba6cda123d085
    79 rdf:type schema:PropertyValue
    80 Nd78e13fc2dad4b12a1c7c2f1f8ff15a9 rdf:first sg:person.01327752120.28
    81 rdf:rest N7440bbb7e9f242fa9c3227baa8753a27
    82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Engineering
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Materials Engineering
    87 rdf:type schema:DefinedTerm
    88 sg:grant.3851677 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-018-2104-z
    89 rdf:type schema:MonetaryGrant
    90 sg:journal.1040979 schema:issn 0022-4715
    91 1572-9613
    92 schema:name Journal of Statistical Physics
    93 rdf:type schema:Periodical
    94 sg:person.012176034336.00 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
    95 schema:familyName Li
    96 schema:givenName Liying
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012176034336.00
    98 rdf:type schema:Person
    99 sg:person.01327752120.28 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
    100 schema:familyName Bakhtin
    101 schema:givenName Yuri
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-3-0348-9078-6_94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637221
    105 https://doi.org/10.1007/978-3-0348-9078-6_94
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-319-50487-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083413452
    108 https://doi.org/10.1007/978-3-319-50487-2
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01057866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032361567
    111 https://doi.org/10.1007/bf01057866
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s00220-002-0748-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037144685
    114 https://doi.org/10.1007/s00220-002-0748-6
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00220-008-0577-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041711903
    117 https://doi.org/10.1007/s00220-008-0577-3
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00220-013-1875-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053073582
    120 https://doi.org/10.1007/s00220-013-1875-y
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s00220-016-2613-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024001804
    123 https://doi.org/10.1007/s00220-016-2613-z
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s002200000237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004080627
    126 https://doi.org/10.1007/s002200000237
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s002200100510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021004084
    129 https://doi.org/10.1007/s002200100510
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s002201224083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031213918
    132 https://doi.org/10.1007/s002201224083
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s00440-011-0363-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007699756
    135 https://doi.org/10.1007/s00440-011-0363-6
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00440-014-0599-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1030390287
    138 https://doi.org/10.1007/s00440-014-0599-z
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00440-016-0729-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003161733
    141 https://doi.org/10.1007/s00440-016-0729-x
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s004400050105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010285167
    144 https://doi.org/10.1007/s004400050105
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s10955-005-8014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048268586
    147 https://doi.org/10.1007/s10955-005-8014-x
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1023/b:joss.0000019830.64243.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009056804
    150 https://doi.org/10.1023/b:joss.0000019830.64243.a2
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1134/s0081543807040098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047884006
    153 https://doi.org/10.1134/s0081543807040098
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1002/cpa.20061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027857142
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1002/cpa.21779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105306625
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1017/s0143385700003473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024574361
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1088/0951-7715/16/3/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109178
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1090/s0002-9939-07-08736-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041069368
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1090/s0894-0347-2013-00773-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059339447
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1090/ulect/068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103642977
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1137/040611896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845139
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1142/p504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098882316
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1214/08-aop392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390107
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1214/12-aop747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393001
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1214/14-aop933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064394531
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1214/16-ejp4413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031719177
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1214/aoap/1177005426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398026
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1214/aop/1008956686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402810
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1214/ejp.v16-875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064396836
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.2307/121126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397576
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.3150/15-bej747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071057157
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.4007/annals.2006.164.993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867007
    192 rdf:type schema:CreativeWork
    193 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
    194 schema:name Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, 10012, New York, NY, USA
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...