Data-Driven Selection of Tessellation Models Describing Polycrystalline Microstructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Ondřej Šedivý, Daniel Westhoff, Jaromír Kopeček, Carl E. Krill III, Volker Schmidt

ABSTRACT

Tessellation models have proven to be useful for the geometric description of grain microstructures in polycrystalline materials. With the use of a suitable tessellation model, the complex morphology of grains can be represented by a small number of parameters assigned to each grain, which not only entails a significant reduction in complexity, but also facilitates the investigation of certain geometric features of the microstructure. However, for a given set of microstructural data, the choice of a particular geometric model is traditionally based on researcher intuition. The model should provide a sufficiently good approximation to the data, while keeping the number of parameters small. In this paper, we discuss general aspects of the process of model selection and suggest several criteria for selecting an appropriate candidate from a certain set of tessellation models. The choice of candidate represents a trade-off between accuracy and complexity of the model. Here, the selected model is used solely to approximate given data samples, but it also provides guidance for developing stochastic tessellation models and generating virtual microstructures. Model fitting is carried out by simulated annealing, applied in a consistent manner to twelve different tessellation models. More... »

PAGES

1223-1246

References to SciGraph publications

  • 2013. Random Tessellations and Boolean Random Functions in MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO SIGNAL AND IMAGE PROCESSING
  • 2000. The Nature of Statistical Learning Theory in NONE
  • 2014-12. DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D in INTEGRATING MATERIALS AND MANUFACTURING INNOVATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10955-018-2096-8

    DOI

    http://dx.doi.org/10.1007/s10955-018-2096-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105294956


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Ulm", 
              "id": "https://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institute of Stochastics, Ulm University, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u0160ediv\u00fd", 
            "givenName": "Ond\u0159ej", 
            "id": "sg:person.012617075015.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012617075015.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ulm", 
              "id": "https://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institute of Stochastics, Ulm University, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Westhoff", 
            "givenName": "Daniel", 
            "id": "sg:person.010613017165.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613017165.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Physics", 
              "id": "https://www.grid.ac/institutes/grid.424881.3", 
              "name": [
                "Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kope\u010dek", 
            "givenName": "Jarom\u00edr", 
            "id": "sg:person.012237774213.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237774213.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ulm", 
              "id": "https://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institute of Micro and Nanomaterials, Ulm University, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krill III", 
            "givenName": "Carl E.", 
            "id": "sg:person.011024346073.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011024346073.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Ulm", 
              "id": "https://www.grid.ac/institutes/grid.6582.9", 
              "name": [
                "Institute of Stochastics, Ulm University, Ulm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "Volker", 
            "id": "sg:person.01051347101.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/14786435.2015.1125540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004676757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786435.2016.1183829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006709046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pmatsci.2006.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006858182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786435.2015.1015469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025275446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adem.201000258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026714111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3264-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028478311", 
              "https://doi.org/10.1007/978-1-4757-3264-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3264-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028478311", 
              "https://doi.org/10.1007/978-1-4757-3264-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/23/6/065001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031631628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.commatsci.2015.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038607364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176344136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044872629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1602293113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046620649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-38294-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051195005", 
              "https://doi.org/10.1007/978-3-642-38294-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2193-9772-3-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052006640", 
              "https://doi.org/10.1186/2193-9772-3-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0216006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062841952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1427577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069490536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5566/ias.v33.p121-130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072988861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5566/ias.1656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084471516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470140529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470140529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470140529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/8685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098932075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1106883556", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470317013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109496296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109496296", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420072884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109725985"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "Tessellation models have proven to be useful for the geometric description of grain microstructures in polycrystalline materials. With the use of a suitable tessellation model, the complex morphology of grains can be represented by a small number of parameters assigned to each grain, which not only entails a significant reduction in complexity, but also facilitates the investigation of certain geometric features of the microstructure. However, for a given set of microstructural data, the choice of a particular geometric model is traditionally based on researcher intuition. The model should provide a sufficiently good approximation to the data, while keeping the number of parameters small. In this paper, we discuss general aspects of the process of model selection and suggest several criteria for selecting an appropriate candidate from a certain set of tessellation models. The choice of candidate represents a trade-off between accuracy and complexity of the model. Here, the selected model is used solely to approximate given data samples, but it also provides guidance for developing stochastic tessellation models and generating virtual microstructures. Model fitting is carried out by simulated annealing, applied in a consistent manner to twelve different tessellation models.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10955-018-2096-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7070872", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "172"
          }
        ], 
        "name": "Data-Driven Selection of Tessellation Models Describing Polycrystalline Microstructures", 
        "pagination": "1223-1246", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "77dbcc4a3b80803e2dc58379d8e8c8eed0b09b846dc27af0a379cdf20915cddd"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10955-018-2096-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105294956"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10955-018-2096-8", 
          "https://app.dimensions.ai/details/publication/pub.1105294956"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000604.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10955-018-2096-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2096-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2096-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2096-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2096-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10955-018-2096-8 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N89b93e46726c40c5a9ada12491cb842d
    4 schema:citation sg:pub.10.1007/978-1-4757-3264-1
    5 sg:pub.10.1007/978-3-642-38294-9_3
    6 sg:pub.10.1186/2193-9772-3-5
    7 https://app.dimensions.ai/details/publication/pub.1106883556
    8 https://app.dimensions.ai/details/publication/pub.1109496296
    9 https://doi.org/10.1002/9780470140529
    10 https://doi.org/10.1002/9780470317013
    11 https://doi.org/10.1002/adem.201000258
    12 https://doi.org/10.1016/j.commatsci.2015.02.006
    13 https://doi.org/10.1016/j.pmatsci.2006.02.003
    14 https://doi.org/10.1073/pnas.1602293113
    15 https://doi.org/10.1080/14786435.2015.1015469
    16 https://doi.org/10.1080/14786435.2015.1125540
    17 https://doi.org/10.1080/14786435.2016.1183829
    18 https://doi.org/10.1088/0965-0393/23/6/065001
    19 https://doi.org/10.1137/0216006
    20 https://doi.org/10.1142/8685
    21 https://doi.org/10.1201/9781420072884
    22 https://doi.org/10.1214/aos/1176344136
    23 https://doi.org/10.2307/1427577
    24 https://doi.org/10.5566/ias.1656
    25 https://doi.org/10.5566/ias.v33.p121-130
    26 schema:datePublished 2018-09
    27 schema:datePublishedReg 2018-09-01
    28 schema:description Tessellation models have proven to be useful for the geometric description of grain microstructures in polycrystalline materials. With the use of a suitable tessellation model, the complex morphology of grains can be represented by a small number of parameters assigned to each grain, which not only entails a significant reduction in complexity, but also facilitates the investigation of certain geometric features of the microstructure. However, for a given set of microstructural data, the choice of a particular geometric model is traditionally based on researcher intuition. The model should provide a sufficiently good approximation to the data, while keeping the number of parameters small. In this paper, we discuss general aspects of the process of model selection and suggest several criteria for selecting an appropriate candidate from a certain set of tessellation models. The choice of candidate represents a trade-off between accuracy and complexity of the model. Here, the selected model is used solely to approximate given data samples, but it also provides guidance for developing stochastic tessellation models and generating virtual microstructures. Model fitting is carried out by simulated annealing, applied in a consistent manner to twelve different tessellation models.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N0b567fb2f3014245b28384074fdbe593
    33 N625999f525d34fe2acd022021188e16f
    34 sg:journal.1040979
    35 schema:name Data-Driven Selection of Tessellation Models Describing Polycrystalline Microstructures
    36 schema:pagination 1223-1246
    37 schema:productId N02b93078f7074041bdbe8ec483997f2b
    38 N2b4c70501587422da88b5320d2e4554b
    39 N542ae8517ccb4a868c215e6aa1f04e60
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105294956
    41 https://doi.org/10.1007/s10955-018-2096-8
    42 schema:sdDatePublished 2019-04-10T21:54
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N87dd827a5232469a80a79db68e41c4d7
    45 schema:url http://link.springer.com/10.1007%2Fs10955-018-2096-8
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N02b93078f7074041bdbe8ec483997f2b schema:name doi
    50 schema:value 10.1007/s10955-018-2096-8
    51 rdf:type schema:PropertyValue
    52 N0b567fb2f3014245b28384074fdbe593 schema:issueNumber 5
    53 rdf:type schema:PublicationIssue
    54 N12718da8a8474706a1d570d0f0c09cdc rdf:first sg:person.010613017165.12
    55 rdf:rest Nf8f14c61ba484dab8492482ef6b4f8be
    56 N2b4c70501587422da88b5320d2e4554b schema:name dimensions_id
    57 schema:value pub.1105294956
    58 rdf:type schema:PropertyValue
    59 N542ae8517ccb4a868c215e6aa1f04e60 schema:name readcube_id
    60 schema:value 77dbcc4a3b80803e2dc58379d8e8c8eed0b09b846dc27af0a379cdf20915cddd
    61 rdf:type schema:PropertyValue
    62 N625999f525d34fe2acd022021188e16f schema:volumeNumber 172
    63 rdf:type schema:PublicationVolume
    64 N64ad569da15d4bb3a4b59aa160fc328c rdf:first sg:person.01051347101.48
    65 rdf:rest rdf:nil
    66 N87dd827a5232469a80a79db68e41c4d7 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N89b93e46726c40c5a9ada12491cb842d rdf:first sg:person.012617075015.22
    69 rdf:rest N12718da8a8474706a1d570d0f0c09cdc
    70 Nc4d5905672c742ee8bbdf88bb4a291e3 rdf:first sg:person.011024346073.56
    71 rdf:rest N64ad569da15d4bb3a4b59aa160fc328c
    72 Nf8f14c61ba484dab8492482ef6b4f8be rdf:first sg:person.012237774213.42
    73 rdf:rest Nc4d5905672c742ee8bbdf88bb4a291e3
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Statistics
    79 rdf:type schema:DefinedTerm
    80 sg:grant.7070872 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-018-2096-8
    81 rdf:type schema:MonetaryGrant
    82 sg:journal.1040979 schema:issn 0022-4715
    83 1572-9613
    84 schema:name Journal of Statistical Physics
    85 rdf:type schema:Periodical
    86 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
    87 schema:familyName Schmidt
    88 schema:givenName Volker
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
    90 rdf:type schema:Person
    91 sg:person.010613017165.12 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
    92 schema:familyName Westhoff
    93 schema:givenName Daniel
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613017165.12
    95 rdf:type schema:Person
    96 sg:person.011024346073.56 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
    97 schema:familyName Krill III
    98 schema:givenName Carl E.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011024346073.56
    100 rdf:type schema:Person
    101 sg:person.012237774213.42 schema:affiliation https://www.grid.ac/institutes/grid.424881.3
    102 schema:familyName Kopeček
    103 schema:givenName Jaromír
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012237774213.42
    105 rdf:type schema:Person
    106 sg:person.012617075015.22 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
    107 schema:familyName Šedivý
    108 schema:givenName Ondřej
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012617075015.22
    110 rdf:type schema:Person
    111 sg:pub.10.1007/978-1-4757-3264-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028478311
    112 https://doi.org/10.1007/978-1-4757-3264-1
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-642-38294-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051195005
    115 https://doi.org/10.1007/978-3-642-38294-9_3
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1186/2193-9772-3-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052006640
    118 https://doi.org/10.1186/2193-9772-3-5
    119 rdf:type schema:CreativeWork
    120 https://app.dimensions.ai/details/publication/pub.1106883556 schema:CreativeWork
    121 https://app.dimensions.ai/details/publication/pub.1109496296 schema:CreativeWork
    122 https://doi.org/10.1002/9780470140529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661595
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1002/9780470317013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496296
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1002/adem.201000258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026714111
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.commatsci.2015.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038607364
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.pmatsci.2006.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006858182
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1073/pnas.1602293113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046620649
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1080/14786435.2015.1015469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025275446
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1080/14786435.2015.1125540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004676757
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1080/14786435.2016.1183829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006709046
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1088/0965-0393/23/6/065001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031631628
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1137/0216006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841952
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1142/8685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098932075
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1201/9781420072884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725985
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.2307/1427577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069490536
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.5566/ias.1656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084471516
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.5566/ias.v33.p121-130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072988861
    155 rdf:type schema:CreativeWork
    156 https://www.grid.ac/institutes/grid.424881.3 schema:alternateName Institute of Physics
    157 schema:name Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
    158 rdf:type schema:Organization
    159 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
    160 schema:name Institute of Micro and Nanomaterials, Ulm University, Ulm, Germany
    161 Institute of Stochastics, Ulm University, Ulm, Germany
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...