Zero-Temperature Dynamics in the Dilute Curie–Weiss Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Reza Gheissari, Charles M. Newman, Daniel L. Stein

ABSTRACT

We consider the Ising model on a dense Erdős–Rényi random graph, G(N,p), with p>0 fixed—equivalently, a disordered Curie–Weiss Ising model with Ber(p) couplings—at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G(N,p) with p>0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie–Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states. More... »

PAGES

1009-1028

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-018-2087-9

DOI

http://dx.doi.org/10.1007/s10955-018-2087-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105067860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematical Sciences, New York University, 10012, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gheissari", 
        "givenName": "Reza", 
        "id": "sg:person.014141320121.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141320121.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University Shanghai", 
          "id": "https://www.grid.ac/institutes/grid.449457.f", 
          "name": [
            "Courant Institute of Mathematical Sciences, New York University, 10012, New York, NY, USA", 
            "NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Newman", 
        "givenName": "Charles M.", 
        "id": "sg:person.012041013603.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041013603.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University Shanghai", 
          "id": "https://www.grid.ac/institutes/grid.449457.f", 
          "name": [
            "Department of Physics and Courant Institute of Mathematical Sciences, New York University, New York, NY, USA", 
            "NYU-ECNU Institutes of Physics and Mathematical Sciences at NYU Shanghai, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stein", 
        "givenName": "Daniel L.", 
        "id": "sg:person.01124132525.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124132525.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0378-4371(02)00797-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004667117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.21422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005832421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2746539.2746619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006929563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2005-00337-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033429970", 
          "https://doi.org/10.1140/epjb/e2005-00337-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2005-00337-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033429970", 
          "https://doi.org/10.1140/epjb/e2005-00337-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1703954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057773896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4608/10/12/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059081610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aap627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-bjps027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/13-aop862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064393817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/14-aop963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064394559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/15-aop1084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084256048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.042101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084604448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.042101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084604448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3055399.3055402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091884124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/trans2/198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698477"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "We consider the Ising model on a dense Erd\u0151s\u2013R\u00e9nyi random graph, G(N,p), with p>0 fixed\u2014equivalently, a disordered Curie\u2013Weiss Ising model with Ber(p) couplings\u2014at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G(N,p) with p>0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie\u2013Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-018-2087-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3137919", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4107955", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "172"
      }
    ], 
    "name": "Zero-Temperature Dynamics in the Dilute Curie\u2013Weiss Model", 
    "pagination": "1009-1028", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e15c9a8040407e68e78dd3adba04518860225ae0e4656166ae4202c1f95b091"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-018-2087-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105067860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-018-2087-9", 
      "https://app.dimensions.ai/details/publication/pub.1105067860"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10955-018-2087-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2087-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2087-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2087-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2087-9'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-018-2087-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N3e4a8e1a38654ba98c770b3d1d1751d5
4 schema:citation sg:pub.10.1140/epjb/e2005-00337-6
5 https://doi.org/10.1002/cpa.21422
6 https://doi.org/10.1016/s0378-4371(02)00797-5
7 https://doi.org/10.1063/1.1703954
8 https://doi.org/10.1088/0305-4608/10/12/017
9 https://doi.org/10.1090/trans2/198
10 https://doi.org/10.1103/physreve.95.042101
11 https://doi.org/10.1145/2746539.2746619
12 https://doi.org/10.1145/3055399.3055402
13 https://doi.org/10.1214/09-aap627
14 https://doi.org/10.1214/09-bjps027
15 https://doi.org/10.1214/13-aop862
16 https://doi.org/10.1214/14-aop963
17 https://doi.org/10.1214/15-aop1084
18 schema:datePublished 2018-08
19 schema:datePublishedReg 2018-08-01
20 schema:description We consider the Ising model on a dense Erdős–Rényi random graph, G(N,p), with p>0 fixed—equivalently, a disordered Curie–Weiss Ising model with Ber(p) couplings—at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G(N,p) with p>0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie–Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N451adb6131694a82afa8490b54d641b2
25 N9e04fdf6b6f446b8b99cdeea6a3ccbdf
26 sg:journal.1040979
27 schema:name Zero-Temperature Dynamics in the Dilute Curie–Weiss Model
28 schema:pagination 1009-1028
29 schema:productId N2e37a8bbe5224647a44cf8d5c09314f1
30 Ncd800e175eb043c3a68c854e0d072b0e
31 Ne2887155a1a547b997d9daaf36cdcd48
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105067860
33 https://doi.org/10.1007/s10955-018-2087-9
34 schema:sdDatePublished 2019-04-11T10:31
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N1128c031efb546378a89e22b04a12231
37 schema:url https://link.springer.com/10.1007%2Fs10955-018-2087-9
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0d9b4d2d25214d2eb113c1f6ce8106e7 rdf:first sg:person.012041013603.58
42 rdf:rest Ne5fcdd13250e496396273cb6909c61d2
43 N1128c031efb546378a89e22b04a12231 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N2e37a8bbe5224647a44cf8d5c09314f1 schema:name readcube_id
46 schema:value 8e15c9a8040407e68e78dd3adba04518860225ae0e4656166ae4202c1f95b091
47 rdf:type schema:PropertyValue
48 N3e4a8e1a38654ba98c770b3d1d1751d5 rdf:first sg:person.014141320121.13
49 rdf:rest N0d9b4d2d25214d2eb113c1f6ce8106e7
50 N451adb6131694a82afa8490b54d641b2 schema:issueNumber 4
51 rdf:type schema:PublicationIssue
52 N9e04fdf6b6f446b8b99cdeea6a3ccbdf schema:volumeNumber 172
53 rdf:type schema:PublicationVolume
54 Ncd800e175eb043c3a68c854e0d072b0e schema:name doi
55 schema:value 10.1007/s10955-018-2087-9
56 rdf:type schema:PropertyValue
57 Ne2887155a1a547b997d9daaf36cdcd48 schema:name dimensions_id
58 schema:value pub.1105067860
59 rdf:type schema:PropertyValue
60 Ne5fcdd13250e496396273cb6909c61d2 rdf:first sg:person.01124132525.25
61 rdf:rest rdf:nil
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
66 schema:name Statistics
67 rdf:type schema:DefinedTerm
68 sg:grant.3137919 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-018-2087-9
69 rdf:type schema:MonetaryGrant
70 sg:grant.4107955 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-018-2087-9
71 rdf:type schema:MonetaryGrant
72 sg:journal.1040979 schema:issn 0022-4715
73 1572-9613
74 schema:name Journal of Statistical Physics
75 rdf:type schema:Periodical
76 sg:person.01124132525.25 schema:affiliation https://www.grid.ac/institutes/grid.449457.f
77 schema:familyName Stein
78 schema:givenName Daniel L.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124132525.25
80 rdf:type schema:Person
81 sg:person.012041013603.58 schema:affiliation https://www.grid.ac/institutes/grid.449457.f
82 schema:familyName Newman
83 schema:givenName Charles M.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041013603.58
85 rdf:type schema:Person
86 sg:person.014141320121.13 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
87 schema:familyName Gheissari
88 schema:givenName Reza
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014141320121.13
90 rdf:type schema:Person
91 sg:pub.10.1140/epjb/e2005-00337-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033429970
92 https://doi.org/10.1140/epjb/e2005-00337-6
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/cpa.21422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005832421
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0378-4371(02)00797-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004667117
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.1703954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773896
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1088/0305-4608/10/12/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059081610
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1090/trans2/198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698477
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physreve.95.042101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084604448
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1145/2746539.2746619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006929563
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1145/3055399.3055402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091884124
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1214/09-aap627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390610
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1214/09-bjps027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391001
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1214/13-aop862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064393817
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1214/14-aop963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064394559
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1214/15-aop1084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084256048
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.449457.f schema:alternateName New York University Shanghai
121 schema:name Courant Institute of Mathematical Sciences, New York University, 10012, New York, NY, USA
122 Department of Physics and Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
123 NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, Shanghai, China
124 NYU-ECNU Institutes of Physics and Mathematical Sciences at NYU Shanghai, Shanghai, China
125 rdf:type schema:Organization
126 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
127 schema:name Courant Institute of Mathematical Sciences, New York University, 10012, New York, NY, USA
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...