Smoluchowski Equation for Networks: Merger Induced Intermittent Giant Node Formation and Degree Gap View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Hayato Goto, Eduardo Viegas, Henrik Jeldtoft Jensen, Hideki Takayasu, Misako Takayasu

ABSTRACT

The dynamical phase diagram of a network undergoing annihilation, creation, and coagulation of nodes is found to exhibit two regimes controlled by the combined effect of preferential attachment for initiator and target nodes during coagulation and for link assignment to new nodes. The first regime exhibits smooth dynamics and power law degree distributions. In the second regime, giant degree nodes and gaps in the degree distribution are formed intermittently. Data for the Japanese firm network in 1994 and 2014 suggests that this network is moving towards the intermittent switching region. More... »

PAGES

1086-1100

References to SciGraph publications

  • 2015. Empirical Analysis of Firm-Dynamics on Japanese Interfirm Trade Network in PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOCIAL MODELING AND SIMULATION, PLUS ECONOPHYSICS COLLOQUIUM 2014
  • 2017-12. Appearance of Unstable Monopoly State Caused by Selective and Concentrative Mergers in Business Networks in SCIENTIFIC REPORTS
  • 1983-06. Coagulation equations with gelation in JOURNAL OF STATISTICAL PHYSICS
  • 1991-11. Statistical properties of aggregation with injection in JOURNAL OF STATISTICAL PHYSICS
  • 1986-09. On the occurrence of a gelation transition in Smoluchowski's coagulation equation in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10955-018-2073-2

    DOI

    http://dx.doi.org/10.1007/s10955-018-2073-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104476295


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Law", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Law and Legal Studies", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tokyo Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goto", 
            "givenName": "Hayato", 
            "id": "sg:person.011530770423.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011530770423.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Centre for Complexity Science and Department of Mathematics, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Viegas", 
            "givenName": "Eduardo", 
            "id": "sg:person.013103757625.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013103757625.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan", 
                "Centre for Complexity Science and Department of Mathematics, Imperial College London, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Henrik Jeldtoft", 
            "id": "sg:person.0751302561.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751302561.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sony Computer Science Laboratories", 
              "id": "https://www.grid.ac/institutes/grid.452725.3", 
              "name": [
                "Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan", 
                "Sony Computer Science Laboratories, 3-14-13, Higashi-Gotanda, Shinagawa-ku, 141-0022, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takayasu", 
            "givenName": "Hideki", 
            "id": "sg:person.011452542725.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452542725.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.32197.3e", 
              "name": [
                "Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takayasu", 
            "givenName": "Misako", 
            "id": "sg:person.013527045464.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527045464.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.108.168701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001388237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.168701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001388237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01011907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009109987", 
              "https://doi.org/10.1007/bf01011907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.286.5439.509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010080128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.036121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015184876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.036121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015184876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-20591-5_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022599326", 
              "https://doi.org/10.1007/978-3-319-20591-5_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9797(90)90362-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026491128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-1980-0577758-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032262510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361:20042080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034770974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.81.030103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036680856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.81.030103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036680856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044794346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044794346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01019497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045307649", 
              "https://doi.org/10.1007/bf01019497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01053751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047541035", 
              "https://doi.org/10.1007/bf01053751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.1998.0801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049258385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1133258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051091029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es00054a026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055486602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp075792z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056073851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp075792z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056073851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/32/44/311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059076733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.37.3110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060477368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.37.3110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060477368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.168304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060760474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.168304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060760474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.52.1669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.52.1669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060789859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.54.1396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060791224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.54.1396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060791224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.63.2563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.63.2563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.64.2026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060800444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.64.2026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060800444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2333389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069894893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-05362-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090535881", 
              "https://doi.org/10.1038/s41598-017-05362-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.260601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100299767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.260601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100299767"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08", 
        "datePublishedReg": "2018-08-01", 
        "description": "The dynamical phase diagram of a network undergoing annihilation, creation, and coagulation of nodes is found to exhibit two regimes controlled by the combined effect of preferential attachment for initiator and target nodes during coagulation and for link assignment to new nodes. The first regime exhibits smooth dynamics and power law degree distributions. In the second regime, giant degree nodes and gaps in the degree distribution are formed intermittently. Data for the Japanese firm network in 1994 and 2014 suggests that this network is moving towards the intermittent switching region.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10955-018-2073-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6138456", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6089796", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "172"
          }
        ], 
        "name": "Smoluchowski Equation for Networks: Merger Induced Intermittent Giant Node Formation and Degree Gap", 
        "pagination": "1086-1100", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aca8ff5be5905f6259b196b95ffbb5b834491c8d7c52558948c2db7f7f66baa5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10955-018-2073-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104476295"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10955-018-2073-2", 
          "https://app.dimensions.ai/details/publication/pub.1104476295"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113664_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10955-018-2073-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2073-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2073-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2073-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2073-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10955-018-2073-2 schema:about anzsrc-for:18
    2 anzsrc-for:1801
    3 schema:author N6e2a36215fa94534a9beef89dd4b81e7
    4 schema:citation sg:pub.10.1007/978-3-319-20591-5_18
    5 sg:pub.10.1007/bf01011907
    6 sg:pub.10.1007/bf01019497
    7 sg:pub.10.1007/bf01053751
    8 sg:pub.10.1038/s41598-017-05362-5
    9 https://doi.org/10.1006/jtbi.1998.0801
    10 https://doi.org/10.1016/0021-9797(90)90362-r
    11 https://doi.org/10.1021/es00054a026
    12 https://doi.org/10.1021/jp075792z
    13 https://doi.org/10.1051/0004-6361:20042080
    14 https://doi.org/10.1088/0305-4470/32/44/311
    15 https://doi.org/10.1090/s0002-9939-1980-0577758-1
    16 https://doi.org/10.1103/physreva.37.3110
    17 https://doi.org/10.1103/physreve.74.036121
    18 https://doi.org/10.1103/physreve.81.030103
    19 https://doi.org/10.1103/physrevlett.108.168701
    20 https://doi.org/10.1103/physrevlett.109.168304
    21 https://doi.org/10.1103/physrevlett.119.260601
    22 https://doi.org/10.1103/physrevlett.52.1669
    23 https://doi.org/10.1103/physrevlett.54.1396
    24 https://doi.org/10.1103/physrevlett.63.2563
    25 https://doi.org/10.1103/physrevlett.64.2026
    26 https://doi.org/10.1103/physrevlett.85.4629
    27 https://doi.org/10.1126/science.1133258
    28 https://doi.org/10.1126/science.286.5439.509
    29 https://doi.org/10.2307/2333389
    30 schema:datePublished 2018-08
    31 schema:datePublishedReg 2018-08-01
    32 schema:description The dynamical phase diagram of a network undergoing annihilation, creation, and coagulation of nodes is found to exhibit two regimes controlled by the combined effect of preferential attachment for initiator and target nodes during coagulation and for link assignment to new nodes. The first regime exhibits smooth dynamics and power law degree distributions. In the second regime, giant degree nodes and gaps in the degree distribution are formed intermittently. Data for the Japanese firm network in 1994 and 2014 suggests that this network is moving towards the intermittent switching region.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf Ne2fcad1d99aa4706961f9ee7a7ab6f42
    37 Nfaa1ca0d03ca4cb98a5db83de6bc42d7
    38 sg:journal.1040979
    39 schema:name Smoluchowski Equation for Networks: Merger Induced Intermittent Giant Node Formation and Degree Gap
    40 schema:pagination 1086-1100
    41 schema:productId N507e7e0840c244eda51a1fc29fd7c866
    42 N543903f15f4c459ca552c1b8513813c2
    43 Nc0e0c4182af549398126229168b2ecb2
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104476295
    45 https://doi.org/10.1007/s10955-018-2073-2
    46 schema:sdDatePublished 2019-04-11T10:34
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Nda49d63377d2457f9a1eb35974ff6f4a
    49 schema:url https://link.springer.com/10.1007%2Fs10955-018-2073-2
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N0e4700c16d574d94b2b095b4f8292b52 rdf:first sg:person.011452542725.42
    54 rdf:rest Neb518338dad64b54bc669403d5ee0d1d
    55 N2b01ea54cb1f4db28a352368627c90a6 rdf:first sg:person.013103757625.00
    56 rdf:rest N77fa7a61ae144fb88efd3bfa5a03dd00
    57 N507e7e0840c244eda51a1fc29fd7c866 schema:name dimensions_id
    58 schema:value pub.1104476295
    59 rdf:type schema:PropertyValue
    60 N543903f15f4c459ca552c1b8513813c2 schema:name doi
    61 schema:value 10.1007/s10955-018-2073-2
    62 rdf:type schema:PropertyValue
    63 N6e2a36215fa94534a9beef89dd4b81e7 rdf:first sg:person.011530770423.76
    64 rdf:rest N2b01ea54cb1f4db28a352368627c90a6
    65 N77fa7a61ae144fb88efd3bfa5a03dd00 rdf:first sg:person.0751302561.38
    66 rdf:rest N0e4700c16d574d94b2b095b4f8292b52
    67 Nc0e0c4182af549398126229168b2ecb2 schema:name readcube_id
    68 schema:value aca8ff5be5905f6259b196b95ffbb5b834491c8d7c52558948c2db7f7f66baa5
    69 rdf:type schema:PropertyValue
    70 Nda49d63377d2457f9a1eb35974ff6f4a schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Ne2fcad1d99aa4706961f9ee7a7ab6f42 schema:volumeNumber 172
    73 rdf:type schema:PublicationVolume
    74 Neb518338dad64b54bc669403d5ee0d1d rdf:first sg:person.013527045464.18
    75 rdf:rest rdf:nil
    76 Nfaa1ca0d03ca4cb98a5db83de6bc42d7 schema:issueNumber 4
    77 rdf:type schema:PublicationIssue
    78 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Law and Legal Studies
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Law
    83 rdf:type schema:DefinedTerm
    84 sg:grant.6089796 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-018-2073-2
    85 rdf:type schema:MonetaryGrant
    86 sg:grant.6138456 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-018-2073-2
    87 rdf:type schema:MonetaryGrant
    88 sg:journal.1040979 schema:issn 0022-4715
    89 1572-9613
    90 schema:name Journal of Statistical Physics
    91 rdf:type schema:Periodical
    92 sg:person.011452542725.42 schema:affiliation https://www.grid.ac/institutes/grid.452725.3
    93 schema:familyName Takayasu
    94 schema:givenName Hideki
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011452542725.42
    96 rdf:type schema:Person
    97 sg:person.011530770423.76 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
    98 schema:familyName Goto
    99 schema:givenName Hayato
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011530770423.76
    101 rdf:type schema:Person
    102 sg:person.013103757625.00 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    103 schema:familyName Viegas
    104 schema:givenName Eduardo
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013103757625.00
    106 rdf:type schema:Person
    107 sg:person.013527045464.18 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
    108 schema:familyName Takayasu
    109 schema:givenName Misako
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527045464.18
    111 rdf:type schema:Person
    112 sg:person.0751302561.38 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    113 schema:familyName Jensen
    114 schema:givenName Henrik Jeldtoft
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751302561.38
    116 rdf:type schema:Person
    117 sg:pub.10.1007/978-3-319-20591-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022599326
    118 https://doi.org/10.1007/978-3-319-20591-5_18
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bf01011907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009109987
    121 https://doi.org/10.1007/bf01011907
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf01019497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045307649
    124 https://doi.org/10.1007/bf01019497
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01053751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047541035
    127 https://doi.org/10.1007/bf01053751
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1038/s41598-017-05362-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090535881
    130 https://doi.org/10.1038/s41598-017-05362-5
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1006/jtbi.1998.0801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049258385
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/0021-9797(90)90362-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1026491128
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1021/es00054a026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055486602
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1021/jp075792z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056073851
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1051/0004-6361:20042080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034770974
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1088/0305-4470/32/44/311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059076733
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1090/s0002-9939-1980-0577758-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032262510
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1103/physreva.37.3110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060477368
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1103/physreve.74.036121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015184876
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/physreve.81.030103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036680856
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1103/physrevlett.108.168701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001388237
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/physrevlett.109.168304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760474
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevlett.119.260601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100299767
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/physrevlett.52.1669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789859
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physrevlett.54.1396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791224
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physrevlett.63.2563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799784
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physrevlett.64.2026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800444
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physrevlett.85.4629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044794346
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1126/science.1133258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051091029
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.2307/2333389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069894893
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
    175 schema:name Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan
    176 rdf:type schema:Organization
    177 https://www.grid.ac/institutes/grid.452725.3 schema:alternateName Sony Computer Science Laboratories
    178 schema:name Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan
    179 Sony Computer Science Laboratories, 3-14-13, Higashi-Gotanda, Shinagawa-ku, 141-0022, Tokyo, Japan
    180 rdf:type schema:Organization
    181 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
    182 schema:name Centre for Complexity Science and Department of Mathematics, Imperial College London, SW7 2AZ, London, UK
    183 Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 226-8502, Yokohama, Japan
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...