Global Estimates of Errors in Quantum Computation by the Feynman–Vernon Formalism View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06

AUTHORS

Erik Aurell

ABSTRACT

The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman–Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S2 as in Klauder’s coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators S^z. The environment can then be integrated out to give a Feynman–Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev’s toric code interacting with an environment in the same manner. More... »

PAGES

745-767

References to SciGraph publications

  • 2010-03. Quantum computers in NATURE
  • 2017-01. Nuclear numerical range and quantum error correction codes for non-unitary noise models in QUANTUM INFORMATION PROCESSING
  • 2010-06. Protected subspaces in quantum information in QUANTUM INFORMATION PROCESSING
  • 1982-06. Simulating physics with computers in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2011-11. A Short Proof of Stability of Topological Order under Local Perturbations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-03. State preservation by repetitive error detection in a superconducting quantum circuit in NATURE
  • 2017-09. Quantum computational supremacy in NATURE
  • 2017-12. Quantum sampling problems, BosonSampling and quantum supremacy in NPJ QUANTUM INFORMATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10955-018-2037-6

    DOI

    http://dx.doi.org/10.1007/s10955-018-2037-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103458928


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.486497.0", 
              "name": [
                "Department of Computational Science and Technology, KTH \u2013 Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden", 
                "Department of the Applied Physics and Computer Science, Aalto University, P.O. Box 11100, 00076, Aalto, Finland", 
                "Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, 100190, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aurell", 
            "givenName": "Erik", 
            "id": "sg:person.01104576776.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11128-009-0131-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000819173", 
              "https://doi.org/10.1007/s11128-009-0131-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-009-0131-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000819173", 
              "https://doi.org/10.1007/s11128-009-0131-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.75.715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006328423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.75.715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006328423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006434277", 
              "https://doi.org/10.1038/nature14270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/42/6/065303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009893962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.71.012336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012640635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.71.012336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012640635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/63/4/204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013513284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(89)90408-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013864413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(89)90408-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013864413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.031015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015080054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.031015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015080054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.86.032324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016194747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.86.032324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016194747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2012.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017699619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018947881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018947881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.85.062116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022382473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.85.062116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022382473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026793563", 
              "https://doi.org/10.1038/nature08812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026793563", 
              "https://doi.org/10.1038/nature08812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.041034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026895916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.6.041034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026895916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/16/4/045014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030084868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1989.0099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030130365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.031043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030763264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.5.031043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030763264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-016-1484-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032151557", 
              "https://doi.org/10.1007/s11128-016-1484-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-016-1484-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032151557", 
              "https://doi.org/10.1007/s11128-016-1484-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(83)90013-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032226063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(83)90013-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032226063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/276698.276708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035487400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.52.3457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036486855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.52.3457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036486855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/40/24/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037376596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02650179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038336282", 
              "https://doi.org/10.1007/bf02650179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-011-1346-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039067847", 
              "https://doi.org/10.1007/s00220-011-1346-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-1573(98)00022-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041856979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1499754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042606596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045896130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045896130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(63)90068-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047797848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.240501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047963202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.240501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047963202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.3345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050300614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.3345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050300614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.65.062101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053325992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.65.062101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053325992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.881512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058127017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1997v052n06abeh002155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058196987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/11/4/043029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059134651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/11/4/043029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059134651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/noti1380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059344662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.55.900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060492792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.55.900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060492792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.93.012335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060514819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.93.012335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060514819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.94.012315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060516136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.94.012315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060516136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.94.042117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060516780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.94.042117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060516780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.19.2349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.19.2349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.34.470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060694259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.34.470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060694259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.59.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.59.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.87.307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.87.307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.275.5298.350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062555517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41534-017-0018-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084537800", 
              "https://doi.org/10.1038/s41534-017-0018-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mspec.2017.7934217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085725771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091600638", 
              "https://doi.org/10.1038/nature23458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature23458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091600638", 
              "https://doi.org/10.1038/nature23458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511813870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098691517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511804236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098705911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511535048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098707430"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06", 
        "datePublishedReg": "2018-06-01", 
        "description": "The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman\u2013Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S2 as in Klauder\u2019s coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators S^z. The environment can then be integrated out to give a Feynman\u2013Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev\u2019s toric code interacting with an environment in the same manner.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10955-018-2037-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "171"
          }
        ], 
        "name": "Global Estimates of Errors in Quantum Computation by the Feynman\u2013Vernon Formalism", 
        "pagination": "745-767", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "49f7995d37020ed2df0373ab53652e2ef5c578992acf65a4a9129bb312cf03e3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10955-018-2037-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103458928"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10955-018-2037-6", 
          "https://app.dimensions.ai/details/publication/pub.1103458928"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10955-018-2037-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2037-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2037-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2037-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-018-2037-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    221 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10955-018-2037-6 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N2fc2a48e773a4a40a4150f672ac3f65e
    4 schema:citation sg:pub.10.1007/bf02650179
    5 sg:pub.10.1007/s00220-011-1346-2
    6 sg:pub.10.1007/s11128-009-0131-z
    7 sg:pub.10.1007/s11128-016-1484-8
    8 sg:pub.10.1038/nature08812
    9 sg:pub.10.1038/nature14270
    10 sg:pub.10.1038/nature23458
    11 sg:pub.10.1038/s41534-017-0018-2
    12 https://doi.org/10.1016/0003-4916(63)90068-x
    13 https://doi.org/10.1016/0378-4371(83)90013-4
    14 https://doi.org/10.1016/0550-3213(89)90408-2
    15 https://doi.org/10.1016/j.physrep.2012.10.002
    16 https://doi.org/10.1016/s0370-1573(98)00022-2
    17 https://doi.org/10.1017/cbo9780511535048
    18 https://doi.org/10.1017/cbo9780511804236
    19 https://doi.org/10.1017/cbo9780511813870
    20 https://doi.org/10.1063/1.1499754
    21 https://doi.org/10.1063/1.881512
    22 https://doi.org/10.1070/rm1997v052n06abeh002155
    23 https://doi.org/10.1088/0034-4885/63/4/204
    24 https://doi.org/10.1088/1367-2630/11/4/043029
    25 https://doi.org/10.1088/1367-2630/16/4/045014
    26 https://doi.org/10.1088/1751-8113/40/24/012
    27 https://doi.org/10.1088/1751-8113/42/6/065303
    28 https://doi.org/10.1090/noti1380
    29 https://doi.org/10.1098/rspa.1989.0099
    30 https://doi.org/10.1103/physreva.52.3457
    31 https://doi.org/10.1103/physreva.55.900
    32 https://doi.org/10.1103/physreva.65.062101
    33 https://doi.org/10.1103/physreva.71.012336
    34 https://doi.org/10.1103/physreva.85.062116
    35 https://doi.org/10.1103/physreva.86.032324
    36 https://doi.org/10.1103/physreva.93.012335
    37 https://doi.org/10.1103/physreva.94.012315
    38 https://doi.org/10.1103/physreva.94.042117
    39 https://doi.org/10.1103/physrevd.19.2349
    40 https://doi.org/10.1103/physrevd.34.470
    41 https://doi.org/10.1103/physrevd.47.3345
    42 https://doi.org/10.1103/physrevlett.107.240501
    43 https://doi.org/10.1103/physrevx.5.031043
    44 https://doi.org/10.1103/physrevx.6.031015
    45 https://doi.org/10.1103/physrevx.6.041034
    46 https://doi.org/10.1103/revmodphys.59.1
    47 https://doi.org/10.1103/revmodphys.75.715
    48 https://doi.org/10.1103/revmodphys.86.153
    49 https://doi.org/10.1103/revmodphys.86.361
    50 https://doi.org/10.1103/revmodphys.87.307
    51 https://doi.org/10.1109/mspec.2017.7934217
    52 https://doi.org/10.1126/science.275.5298.350
    53 https://doi.org/10.1145/276698.276708
    54 schema:datePublished 2018-06
    55 schema:datePublishedReg 2018-06-01
    56 schema:description The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman–Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S2 as in Klauder’s coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators S^z. The environment can then be integrated out to give a Feynman–Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev’s toric code interacting with an environment in the same manner.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N66bea7ecb8014c3d8221590e4d9ae9ed
    61 N87e25e615fef47e9b673b8785d89e7a5
    62 sg:journal.1040979
    63 schema:name Global Estimates of Errors in Quantum Computation by the Feynman–Vernon Formalism
    64 schema:pagination 745-767
    65 schema:productId N4b1be1b164d44a919bab69b00f20b702
    66 N6a338382db9847afaeba951c01cb244f
    67 N7383a7a80b674a2eaeb5823fec1fa60a
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103458928
    69 https://doi.org/10.1007/s10955-018-2037-6
    70 schema:sdDatePublished 2019-04-11T09:55
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher Nbe5bfbb4f1314bd28bea3c05ebb7db9b
    73 schema:url https://link.springer.com/10.1007%2Fs10955-018-2037-6
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N2fc2a48e773a4a40a4150f672ac3f65e rdf:first sg:person.01104576776.49
    78 rdf:rest rdf:nil
    79 N4b1be1b164d44a919bab69b00f20b702 schema:name readcube_id
    80 schema:value 49f7995d37020ed2df0373ab53652e2ef5c578992acf65a4a9129bb312cf03e3
    81 rdf:type schema:PropertyValue
    82 N66bea7ecb8014c3d8221590e4d9ae9ed schema:volumeNumber 171
    83 rdf:type schema:PublicationVolume
    84 N6a338382db9847afaeba951c01cb244f schema:name dimensions_id
    85 schema:value pub.1103458928
    86 rdf:type schema:PropertyValue
    87 N7383a7a80b674a2eaeb5823fec1fa60a schema:name doi
    88 schema:value 10.1007/s10955-018-2037-6
    89 rdf:type schema:PropertyValue
    90 N87e25e615fef47e9b673b8785d89e7a5 schema:issueNumber 5
    91 rdf:type schema:PublicationIssue
    92 Nbe5bfbb4f1314bd28bea3c05ebb7db9b schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Physical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Quantum Physics
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1040979 schema:issn 0022-4715
    101 1572-9613
    102 schema:name Journal of Statistical Physics
    103 rdf:type schema:Periodical
    104 sg:person.01104576776.49 schema:affiliation https://www.grid.ac/institutes/grid.486497.0
    105 schema:familyName Aurell
    106 schema:givenName Erik
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49
    108 rdf:type schema:Person
    109 sg:pub.10.1007/bf02650179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336282
    110 https://doi.org/10.1007/bf02650179
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s00220-011-1346-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039067847
    113 https://doi.org/10.1007/s00220-011-1346-2
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s11128-009-0131-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000819173
    116 https://doi.org/10.1007/s11128-009-0131-z
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s11128-016-1484-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032151557
    119 https://doi.org/10.1007/s11128-016-1484-8
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/nature08812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026793563
    122 https://doi.org/10.1038/nature08812
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/nature14270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006434277
    125 https://doi.org/10.1038/nature14270
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/nature23458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091600638
    128 https://doi.org/10.1038/nature23458
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1038/s41534-017-0018-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084537800
    131 https://doi.org/10.1038/s41534-017-0018-2
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/0003-4916(63)90068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047797848
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/0378-4371(83)90013-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032226063
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/0550-3213(89)90408-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013864413
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.physrep.2012.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017699619
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/s0370-1573(98)00022-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041856979
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1017/cbo9780511535048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098707430
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1017/cbo9780511804236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098705911
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1017/cbo9780511813870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098691517
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1063/1.1499754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042606596
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1063/1.881512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127017
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1070/rm1997v052n06abeh002155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058196987
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1088/0034-4885/63/4/204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013513284
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1088/1367-2630/11/4/043029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059134651
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1088/1367-2630/16/4/045014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030084868
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1088/1751-8113/40/24/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037376596
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1088/1751-8113/42/6/065303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009893962
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1090/noti1380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059344662
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1098/rspa.1989.0099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030130365
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physreva.52.3457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036486855
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physreva.55.900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492792
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physreva.65.062101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053325992
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physreva.71.012336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012640635
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1103/physreva.85.062116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022382473
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1103/physreva.86.032324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016194747
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1103/physreva.93.012335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060514819
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1103/physreva.94.012315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060516136
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1103/physreva.94.042117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060516780
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1103/physrevd.19.2349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060686632
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1103/physrevd.34.470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060694259
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1103/physrevd.47.3345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050300614
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1103/physrevlett.107.240501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047963202
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1103/physrevx.5.031043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030763264
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1103/physrevx.6.031015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015080054
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1103/physrevx.6.041034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026895916
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1103/revmodphys.59.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839108
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1103/revmodphys.75.715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006328423
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/revmodphys.86.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947881
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1103/revmodphys.86.361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045896130
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1103/revmodphys.87.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839783
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1109/mspec.2017.7934217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085725771
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1126/science.275.5298.350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555517
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1145/276698.276708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035487400
    216 rdf:type schema:CreativeWork
    217 https://www.grid.ac/institutes/grid.486497.0 schema:alternateName Institute of Theoretical Physics
    218 schema:name Department of Computational Science and Technology, KTH – Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
    219 Department of the Applied Physics and Computer Science, Aalto University, P.O. Box 11100, 00076, Aalto, Finland
    220 Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, 100190, Beijing, China
    221 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...