Decoherence, the Density Matrix, the Thermal State and the Classical World View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Bernard Gaveau, Lawrence S. Schulman

ABSTRACT

Decoherence has been the basis for understanding the emergence of the classical world from its quantum underpinnings. Unfortunately the calculations establishing decoherence overshoot and, based on assumptions that break down, predict that with the passage of time the off-diagonal elements of the density matrix become arbitrarily small. It has been recognized by some authors that the thermal state, assumed to hold for systems in equilibrium, places a bound on off diagonal terms. In this article we establish—preserving the conservation of energy, as is not the case for previous work—that indeed the thermal state is an attractor under scattering. Moreover, the bound on the off-diagonal terms present in the thermal state does not contradict everyday experience. More... »

PAGES

889-901

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-017-1901-0

DOI

http://dx.doi.org/10.1007/s10955-017-1901-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092350656


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratoire analyse et physique math\u00e9matique, rue Gassendi 18, 59000, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaveau", 
        "givenName": "Bernard", 
        "id": "sg:person.011754127724.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754127724.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Physics Department, Clarkson University, 13699-5820, Potsdam, NY, USA", 
            "Max Planck Institute for the Physics of Complex Systems, N\u00f6thnitzer Str. 38, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulman", 
        "givenName": "Lawrence S.", 
        "id": "sg:person.010275521604.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00662807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001651137", 
          "https://doi.org/10.1007/bf00662807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00662807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001651137", 
          "https://doi.org/10.1007/bf00662807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01725541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008918502", 
          "https://doi.org/10.1007/bf01725541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01725541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008918502", 
          "https://doi.org/10.1007/bf01725541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1016739087", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1016739087", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2015-02434-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032686523", 
          "https://doi.org/10.1140/epjst/e2015-02434-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1041991125", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1041991125", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060482128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060482128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.2188962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062250520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511840227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666636"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Decoherence has been the basis for understanding the emergence of the classical world from its quantum underpinnings. Unfortunately the calculations establishing decoherence overshoot and, based on assumptions that break down, predict that with the passage of time the off-diagonal elements of the density matrix become arbitrarily small. It has been recognized by some authors that the thermal state, assumed to hold for systems in equilibrium, places a bound on off diagonal terms. In this article we establish\u2014preserving the conservation of energy, as is not the case for previous work\u2014that indeed the thermal state is an attractor under scattering. Moreover, the bound on the off-diagonal terms present in the thermal state does not contradict everyday experience.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-017-1901-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "169"
      }
    ], 
    "name": "Decoherence, the Density Matrix, the Thermal State and the Classical World", 
    "pagination": "889-901", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8eb62ad01d9ec656583f97aa7810e527918ee8ddaf8ab0cd7a41ff179996948a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-017-1901-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092350656"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-017-1901-0", 
      "https://app.dimensions.ai/details/publication/pub.1092350656"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000570.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10955-017-1901-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-017-1901-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-017-1901-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-017-1901-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-017-1901-0'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-017-1901-0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N06140e0f65c94083b9c04fafa11445b9
4 schema:citation sg:pub.10.1007/bf00662807
5 sg:pub.10.1007/bf01725541
6 sg:pub.10.1140/epjst/e2015-02434-7
7 https://app.dimensions.ai/details/publication/pub.1016739087
8 https://app.dimensions.ai/details/publication/pub.1041991125
9 https://doi.org/10.1017/cbo9780511840227
10 https://doi.org/10.1103/physreva.42.38
11 https://doi.org/10.1119/1.2188962
12 schema:datePublished 2017-12
13 schema:datePublishedReg 2017-12-01
14 schema:description Decoherence has been the basis for understanding the emergence of the classical world from its quantum underpinnings. Unfortunately the calculations establishing decoherence overshoot and, based on assumptions that break down, predict that with the passage of time the off-diagonal elements of the density matrix become arbitrarily small. It has been recognized by some authors that the thermal state, assumed to hold for systems in equilibrium, places a bound on off diagonal terms. In this article we establish—preserving the conservation of energy, as is not the case for previous work—that indeed the thermal state is an attractor under scattering. Moreover, the bound on the off-diagonal terms present in the thermal state does not contradict everyday experience.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N33dd9112fd1540c48f0c1f833ae55870
19 N94ca65c6c4bf4972a7ae92c256852d41
20 sg:journal.1040979
21 schema:name Decoherence, the Density Matrix, the Thermal State and the Classical World
22 schema:pagination 889-901
23 schema:productId N25b31272ae0c4c948950b60bf982e066
24 N4c17dfba574747d390d5e266d83f637f
25 N5b15655aeef94d8f908a5b43cb2e1d51
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092350656
27 https://doi.org/10.1007/s10955-017-1901-0
28 schema:sdDatePublished 2019-04-10T20:55
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nbf2803119e2146b6a9c06e2f5896b371
31 schema:url https://link.springer.com/10.1007%2Fs10955-017-1901-0
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N06140e0f65c94083b9c04fafa11445b9 rdf:first sg:person.011754127724.08
36 rdf:rest N5d71f94b2afc44b2b7ddfe084ab226c3
37 N1cca6ae45a414eb987877c7aafb950b8 schema:name Laboratoire analyse et physique mathématique, rue Gassendi 18, 59000, Lille, France
38 rdf:type schema:Organization
39 N25b31272ae0c4c948950b60bf982e066 schema:name dimensions_id
40 schema:value pub.1092350656
41 rdf:type schema:PropertyValue
42 N33dd9112fd1540c48f0c1f833ae55870 schema:issueNumber 5
43 rdf:type schema:PublicationIssue
44 N4c17dfba574747d390d5e266d83f637f schema:name doi
45 schema:value 10.1007/s10955-017-1901-0
46 rdf:type schema:PropertyValue
47 N5b15655aeef94d8f908a5b43cb2e1d51 schema:name readcube_id
48 schema:value 8eb62ad01d9ec656583f97aa7810e527918ee8ddaf8ab0cd7a41ff179996948a
49 rdf:type schema:PropertyValue
50 N5d71f94b2afc44b2b7ddfe084ab226c3 rdf:first sg:person.010275521604.97
51 rdf:rest rdf:nil
52 N94ca65c6c4bf4972a7ae92c256852d41 schema:volumeNumber 169
53 rdf:type schema:PublicationVolume
54 Nbf2803119e2146b6a9c06e2f5896b371 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
57 schema:name Physical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
60 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
61 rdf:type schema:DefinedTerm
62 sg:journal.1040979 schema:issn 0022-4715
63 1572-9613
64 schema:name Journal of Statistical Physics
65 rdf:type schema:Periodical
66 sg:person.010275521604.97 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
67 schema:familyName Schulman
68 schema:givenName Lawrence S.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97
70 rdf:type schema:Person
71 sg:person.011754127724.08 schema:affiliation N1cca6ae45a414eb987877c7aafb950b8
72 schema:familyName Gaveau
73 schema:givenName Bernard
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754127724.08
75 rdf:type schema:Person
76 sg:pub.10.1007/bf00662807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001651137
77 https://doi.org/10.1007/bf00662807
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01725541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008918502
80 https://doi.org/10.1007/bf01725541
81 rdf:type schema:CreativeWork
82 sg:pub.10.1140/epjst/e2015-02434-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032686523
83 https://doi.org/10.1140/epjst/e2015-02434-7
84 rdf:type schema:CreativeWork
85 https://app.dimensions.ai/details/publication/pub.1016739087 schema:CreativeWork
86 https://app.dimensions.ai/details/publication/pub.1041991125 schema:CreativeWork
87 https://doi.org/10.1017/cbo9780511840227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666636
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physreva.42.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060482128
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1119/1.2188962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062250520
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
94 schema:name Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187, Dresden, Germany
95 Physics Department, Clarkson University, 13699-5820, Potsdam, NY, USA
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...