Dynamical Localization for Discrete Anderson Dirac Operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04

AUTHORS

Roberto A. Prado, César R. de Oliveira, Silas L. Carvalho

ABSTRACT

We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d∈1,2,3, in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential. More... »

PAGES

260-296

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-017-1746-6

DOI

http://dx.doi.org/10.1007/s10955-017-1746-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084028218


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "Departamento de Matem\u00e1tica, UFSC, 88040-900, Florian\u00f3polis, SC, Brazil", 
            "UNESP, 19060-900, Presidente Prudente, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prado", 
        "givenName": "Roberto A.", 
        "id": "sg:person.07347152764.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347152764.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Departamento de Matem\u00e1tica, UFSCar, 13560-970, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Oliveira", 
        "givenName": "C\u00e9sar R.", 
        "id": "sg:person.015306152053.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306152053.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Minas Gerais", 
          "id": "https://www.grid.ac/institutes/grid.8430.f", 
          "name": [
            "Departamento de Matem\u00e1tica, UFMG, 31270-901, Belo Horizonte, MG, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carvalho", 
        "givenName": "Silas L.", 
        "id": "sg:person.014740374537.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740374537.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02186292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000272134", 
          "https://doi.org/10.1007/bf02186292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02186292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000272134", 
          "https://doi.org/10.1007/bf02186292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002642648", 
          "https://doi.org/10.1007/bf01210702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002642648", 
          "https://doi.org/10.1007/bf01210702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11040-009-9068-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006263169", 
          "https://doi.org/10.1007/s11040-009-9068-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11040-009-9068-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006263169", 
          "https://doi.org/10.1007/s11040-009-9068-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01209475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011949639", 
          "https://doi.org/10.1007/bf01209475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200100441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013232746", 
          "https://doi.org/10.1007/s002200100441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02916756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013316716", 
          "https://doi.org/10.1007/bf02916756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02916756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013316716", 
          "https://doi.org/10.1007/bf02916756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/7/l02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014732830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-005-0463-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014925504", 
          "https://doi.org/10.1007/s00222-005-0463-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-005-0463-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014925504", 
          "https://doi.org/10.1007/s00222-005-0463-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02099760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019030017", 
          "https://doi.org/10.1007/bf02099760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02099760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019030017", 
          "https://doi.org/10.1007/bf02099760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-007-0210-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022048685", 
          "https://doi.org/10.1007/s00209-007-0210-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0169-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028016966", 
          "https://doi.org/10.1007/978-1-4612-0169-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0169-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028016966", 
          "https://doi.org/10.1007/978-1-4612-0169-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/38/385207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030862096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/38/385207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030862096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2009.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033201092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0591-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036839837", 
          "https://doi.org/10.1007/978-3-0348-0591-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11868-010-0005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040057968", 
          "https://doi.org/10.1007/s11868-010-0005-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11868-010-0005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040057968", 
          "https://doi.org/10.1007/s11868-010-0005-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1948328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043942595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1948328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043942595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-011-0248-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046740133", 
          "https://doi.org/10.1007/s10955-011-0248-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2011.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049519774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3600536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057982659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.075123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.210403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072318060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/552/10911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089199665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098467936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/6441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098882109"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d\u22081,2,3, in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-017-1746-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "167"
      }
    ], 
    "name": "Dynamical Localization for Discrete Anderson Dirac Operators", 
    "pagination": "260-296", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7855338398756357217b9da8c13b4556280191bfe83da0dd2d69fe14a6ace3b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-017-1746-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084028218"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-017-1746-6", 
      "https://app.dimensions.ai/details/publication/pub.1084028218"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10955-017-1746-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-017-1746-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-017-1746-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-017-1746-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-017-1746-6'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-017-1746-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9489b174056947d9b9a407e61c8e3c43
4 schema:citation sg:pub.10.1007/978-1-4612-0169-4
5 sg:pub.10.1007/978-3-0348-0591-9_4
6 sg:pub.10.1007/bf01209475
7 sg:pub.10.1007/bf01210702
8 sg:pub.10.1007/bf02099760
9 sg:pub.10.1007/bf02186292
10 sg:pub.10.1007/bf02916756
11 sg:pub.10.1007/s00209-007-0210-8
12 sg:pub.10.1007/s002200100441
13 sg:pub.10.1007/s00222-005-0463-y
14 sg:pub.10.1007/s10955-011-0248-1
15 sg:pub.10.1007/s11040-009-9068-9
16 sg:pub.10.1007/s11868-010-0005-2
17 https://doi.org/10.1016/j.jmaa.2009.11.005
18 https://doi.org/10.1016/j.jmaa.2011.07.024
19 https://doi.org/10.1063/1.1948328
20 https://doi.org/10.1063/1.3600536
21 https://doi.org/10.1088/0305-4470/38/7/l02
22 https://doi.org/10.1088/1751-8113/42/38/385207
23 https://doi.org/10.1090/conm/552/10911
24 https://doi.org/10.1090/gsm/168
25 https://doi.org/10.1103/physrevb.79.075123
26 https://doi.org/10.1103/physrevlett.102.210403
27 https://doi.org/10.1142/6441
28 https://doi.org/10.4171/jems/451
29 schema:datePublished 2017-04
30 schema:datePublishedReg 2017-04-01
31 schema:description We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d∈1,2,3, in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N0c223dc803924566a57d9de2ca50a137
36 N6d9876a10b12479eb3b2f03c9b09d1cf
37 sg:journal.1040979
38 schema:name Dynamical Localization for Discrete Anderson Dirac Operators
39 schema:pagination 260-296
40 schema:productId N2a03791195d24bd7a211924765856f92
41 N91b7f92d310d4f4d809b2233e16288c0
42 Nb6bed8b0eb5c44b4882d9a788c038a21
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084028218
44 https://doi.org/10.1007/s10955-017-1746-6
45 schema:sdDatePublished 2019-04-11T12:23
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N59084d50aa5346a9a8bfae07a2620b18
48 schema:url https://link.springer.com/10.1007%2Fs10955-017-1746-6
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0c223dc803924566a57d9de2ca50a137 schema:issueNumber 2
53 rdf:type schema:PublicationIssue
54 N204eef8f652f4ddd816aef92a1427b5d rdf:first sg:person.014740374537.65
55 rdf:rest rdf:nil
56 N2a03791195d24bd7a211924765856f92 schema:name doi
57 schema:value 10.1007/s10955-017-1746-6
58 rdf:type schema:PropertyValue
59 N59084d50aa5346a9a8bfae07a2620b18 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N6d9876a10b12479eb3b2f03c9b09d1cf schema:volumeNumber 167
62 rdf:type schema:PublicationVolume
63 N8b8248091bbd40e3bdb57a7ac6c85f13 rdf:first sg:person.015306152053.56
64 rdf:rest N204eef8f652f4ddd816aef92a1427b5d
65 N91b7f92d310d4f4d809b2233e16288c0 schema:name readcube_id
66 schema:value 7855338398756357217b9da8c13b4556280191bfe83da0dd2d69fe14a6ace3b4
67 rdf:type schema:PropertyValue
68 N9489b174056947d9b9a407e61c8e3c43 rdf:first sg:person.07347152764.05
69 rdf:rest N8b8248091bbd40e3bdb57a7ac6c85f13
70 Nb6bed8b0eb5c44b4882d9a788c038a21 schema:name dimensions_id
71 schema:value pub.1084028218
72 rdf:type schema:PropertyValue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1040979 schema:issn 0022-4715
80 1572-9613
81 schema:name Journal of Statistical Physics
82 rdf:type schema:Periodical
83 sg:person.014740374537.65 schema:affiliation https://www.grid.ac/institutes/grid.8430.f
84 schema:familyName Carvalho
85 schema:givenName Silas L.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014740374537.65
87 rdf:type schema:Person
88 sg:person.015306152053.56 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
89 schema:familyName de Oliveira
90 schema:givenName César R.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306152053.56
92 rdf:type schema:Person
93 sg:person.07347152764.05 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
94 schema:familyName Prado
95 schema:givenName Roberto A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07347152764.05
97 rdf:type schema:Person
98 sg:pub.10.1007/978-1-4612-0169-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028016966
99 https://doi.org/10.1007/978-1-4612-0169-4
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-0348-0591-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036839837
102 https://doi.org/10.1007/978-3-0348-0591-9_4
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf01209475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949639
105 https://doi.org/10.1007/bf01209475
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01210702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002642648
108 https://doi.org/10.1007/bf01210702
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02099760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019030017
111 https://doi.org/10.1007/bf02099760
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf02186292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000272134
114 https://doi.org/10.1007/bf02186292
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf02916756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013316716
117 https://doi.org/10.1007/bf02916756
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00209-007-0210-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022048685
120 https://doi.org/10.1007/s00209-007-0210-8
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s002200100441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013232746
123 https://doi.org/10.1007/s002200100441
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00222-005-0463-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014925504
126 https://doi.org/10.1007/s00222-005-0463-y
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10955-011-0248-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046740133
129 https://doi.org/10.1007/s10955-011-0248-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11040-009-9068-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006263169
132 https://doi.org/10.1007/s11040-009-9068-9
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11868-010-0005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040057968
135 https://doi.org/10.1007/s11868-010-0005-2
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jmaa.2009.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033201092
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jmaa.2011.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049519774
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.1948328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043942595
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.3600536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057982659
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1088/0305-4470/38/7/l02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014732830
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1088/1751-8113/42/38/385207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030862096
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1090/conm/552/10911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089199665
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1090/gsm/168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098467936
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.79.075123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627431
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.102.210403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755436
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1142/6441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098882109
158 rdf:type schema:CreativeWork
159 https://doi.org/10.4171/jems/451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072318060
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.410543.7 schema:alternateName Sao Paulo State University
162 schema:name Departamento de Matemática, UFSC, 88040-900, Florianópolis, SC, Brazil
163 UNESP, 19060-900, Presidente Prudente, SP, Brazil
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.411247.5 schema:alternateName Federal University of São Carlos
166 schema:name Departamento de Matemática, UFSCar, 13560-970, São Carlos, SP, Brazil
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.8430.f schema:alternateName Universidade Federal de Minas Gerais
169 schema:name Departamento de Matemática, UFMG, 31270-901, Belo Horizonte, MG, Brazil
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...