Stationary Apollonian Packings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

Christian Hirsch, Gary Delaney, Volker Schmidt

ABSTRACT

The notion of stationary Apollonian packings in the d-dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian packings and rotational random Apollonian packings, which constitute popular grain packing models in physics. Apart from dealing with issues of existence and uniqueness in the entire Euclidean space, asymptotic results are provided for the growth durations and it is shown that the packing is space-filling with probability 1, in the sense that the Lebesgue measure of its complement is zero. Finally, the phenomenon is studied that grains arrange in clusters and properties related to percolation are investigated. More... »

PAGES

35-72

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-015-1326-6

DOI

http://dx.doi.org/10.1007/s10955-015-1326-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015280011


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Weierstrass Institute for Applied Analysis and Stochastics", 
          "id": "https://www.grid.ac/institutes/grid.433806.a", 
          "name": [
            "Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirsch", 
        "givenName": "Christian", 
        "id": "sg:person.015752751047.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752751047.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIRO Digital Productivity Flagship, Clayton South, Private Bag 33, 3168, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delaney", 
        "givenName": "Gary", 
        "id": "sg:person.012510741033.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510741033.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/pl00001103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001178532", 
          "https://doi.org/10.1007/pl00001103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-009-9722-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001317945", 
          "https://doi.org/10.1007/s10955-009-9722-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-009-9722-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001317945", 
          "https://doi.org/10.1007/s10955-009-9722-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011389807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011389807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-005-0459-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020134780", 
          "https://doi.org/10.1007/s00440-005-0459-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-005-0459-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020134780", 
          "https://doi.org/10.1007/s00440-005-0459-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-005-0459-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020134780", 
          "https://doi.org/10.1007/s00440-005-0459-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15326349.2015.973722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027924721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-008-9523-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029177099", 
          "https://doi.org/10.1007/s10955-008-9523-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030294580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01048305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037355856", 
          "https://doi.org/10.1007/bf01048305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2418(199610)9:3<295::aid-rsa3>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039577199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1050491356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78859-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050491356", 
          "https://doi.org/10.1007/978-3-540-78859-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78859-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050491356", 
          "https://doi.org/10.1007/978-3-540-78859-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/anbo.1996.0018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054485620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.120602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.120602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579300004745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062055610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579300004745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062055610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-aop415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1024404279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064403147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1029955194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1086957574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1127483738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1363354101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064441088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511750489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139174695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668573"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "The notion of stationary Apollonian packings in the d-dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian packings and rotational random Apollonian packings, which constitute popular grain packing models in physics. Apart from dealing with issues of existence and uniqueness in the entire Euclidean space, asymptotic results are provided for the growth durations and it is shown that the packing is space-filling with probability 1, in the sense that the Lebesgue measure of its complement is zero. Finally, the phenomenon is studied that grains arrange in clusters and properties related to percolation are investigated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-015-1326-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "161"
      }
    ], 
    "name": "Stationary Apollonian Packings", 
    "pagination": "35-72", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "48cd597ff2d3e2f7f8a0d830fc4f194adcfd552e5e08346a45f84194202c1816"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-015-1326-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015280011"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-015-1326-6", 
      "https://app.dimensions.ai/details/publication/pub.1015280011"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-015-1326-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-015-1326-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-015-1326-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-015-1326-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-015-1326-6'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-015-1326-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf14d48a2cc304544a8ada0a310960e63
4 schema:citation sg:pub.10.1007/978-3-540-78859-1
5 sg:pub.10.1007/bf01048305
6 sg:pub.10.1007/pl00001103
7 sg:pub.10.1007/s00440-005-0459-y
8 sg:pub.10.1007/s10955-008-9523-1
9 sg:pub.10.1007/s10955-009-9722-4
10 https://app.dimensions.ai/details/publication/pub.1050491356
11 https://doi.org/10.1002/(sici)1098-2418(199610)9:3<295::aid-rsa3>3.0.co;2-s
12 https://doi.org/10.1002/rsa.20099
13 https://doi.org/10.1002/rsa.20410
14 https://doi.org/10.1006/anbo.1996.0018
15 https://doi.org/10.1017/cbo9780511750489
16 https://doi.org/10.1017/cbo9781139174695
17 https://doi.org/10.1080/15326349.2015.973722
18 https://doi.org/10.1103/physreve.65.056108
19 https://doi.org/10.1103/physrevlett.101.120602
20 https://doi.org/10.1103/physrevlett.77.1785
21 https://doi.org/10.1112/s0025579300004745
22 https://doi.org/10.1214/08-aop415
23 https://doi.org/10.1214/aop/1024404279
24 https://doi.org/10.1239/aap/1029955194
25 https://doi.org/10.1239/aap/1086957574
26 https://doi.org/10.1239/aap/1127483738
27 https://doi.org/10.1239/aap/1363354101
28 schema:datePublished 2015-10
29 schema:datePublishedReg 2015-10-01
30 schema:description The notion of stationary Apollonian packings in the d-dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian packings and rotational random Apollonian packings, which constitute popular grain packing models in physics. Apart from dealing with issues of existence and uniqueness in the entire Euclidean space, asymptotic results are provided for the growth durations and it is shown that the packing is space-filling with probability 1, in the sense that the Lebesgue measure of its complement is zero. Finally, the phenomenon is studied that grains arrange in clusters and properties related to percolation are investigated.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N641c5f4e5f6848c4a146922a6ec46c2f
35 Nf066941cf3ee45a684d5fd088761795a
36 sg:journal.1040979
37 schema:name Stationary Apollonian Packings
38 schema:pagination 35-72
39 schema:productId N511c69b1016e41c5b2ef9aa632bd7b4a
40 Ne93a8715be314b2aa0ecd6d4473dcd55
41 Nfb7b8e30978b4d4c814958810a6d4918
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015280011
43 https://doi.org/10.1007/s10955-015-1326-6
44 schema:sdDatePublished 2019-04-11T02:00
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N6e6ff8c898ce4a24b594d2e78f76ee7a
47 schema:url http://link.springer.com/10.1007%2Fs10955-015-1326-6
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N511c69b1016e41c5b2ef9aa632bd7b4a schema:name doi
52 schema:value 10.1007/s10955-015-1326-6
53 rdf:type schema:PropertyValue
54 N5bdc8c5fc3d94134b59bf43e8d7bc091 rdf:first sg:person.01051347101.48
55 rdf:rest rdf:nil
56 N641c5f4e5f6848c4a146922a6ec46c2f schema:volumeNumber 161
57 rdf:type schema:PublicationVolume
58 N6e6ff8c898ce4a24b594d2e78f76ee7a schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N81713ebdca824891a5f46ed1c2aa4f82 schema:name CSIRO Digital Productivity Flagship, Clayton South, Private Bag 33, 3168, Melbourne, Australia
61 rdf:type schema:Organization
62 Nd19d4c006f0f41cbbfc1bc7ca2559503 rdf:first sg:person.012510741033.04
63 rdf:rest N5bdc8c5fc3d94134b59bf43e8d7bc091
64 Ne93a8715be314b2aa0ecd6d4473dcd55 schema:name dimensions_id
65 schema:value pub.1015280011
66 rdf:type schema:PropertyValue
67 Nf066941cf3ee45a684d5fd088761795a schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 Nf14d48a2cc304544a8ada0a310960e63 rdf:first sg:person.015752751047.99
70 rdf:rest Nd19d4c006f0f41cbbfc1bc7ca2559503
71 Nfb7b8e30978b4d4c814958810a6d4918 schema:name readcube_id
72 schema:value 48cd597ff2d3e2f7f8a0d830fc4f194adcfd552e5e08346a45f84194202c1816
73 rdf:type schema:PropertyValue
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1040979 schema:issn 0022-4715
81 1572-9613
82 schema:name Journal of Statistical Physics
83 rdf:type schema:Periodical
84 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
85 schema:familyName Schmidt
86 schema:givenName Volker
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
88 rdf:type schema:Person
89 sg:person.012510741033.04 schema:affiliation N81713ebdca824891a5f46ed1c2aa4f82
90 schema:familyName Delaney
91 schema:givenName Gary
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510741033.04
93 rdf:type schema:Person
94 sg:person.015752751047.99 schema:affiliation https://www.grid.ac/institutes/grid.433806.a
95 schema:familyName Hirsch
96 schema:givenName Christian
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752751047.99
98 rdf:type schema:Person
99 sg:pub.10.1007/978-3-540-78859-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050491356
100 https://doi.org/10.1007/978-3-540-78859-1
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01048305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037355856
103 https://doi.org/10.1007/bf01048305
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/pl00001103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001178532
106 https://doi.org/10.1007/pl00001103
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00440-005-0459-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020134780
109 https://doi.org/10.1007/s00440-005-0459-y
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10955-008-9523-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029177099
112 https://doi.org/10.1007/s10955-008-9523-1
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10955-009-9722-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001317945
115 https://doi.org/10.1007/s10955-009-9722-4
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1050491356 schema:CreativeWork
118 https://doi.org/10.1002/(sici)1098-2418(199610)9:3<295::aid-rsa3>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1039577199
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/rsa.20099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011389807
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/rsa.20410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030294580
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1006/anbo.1996.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054485620
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1017/cbo9780511750489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664148
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/cbo9781139174695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668573
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/15326349.2015.973722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027924721
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physreve.65.056108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728482
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.101.120602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754068
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.77.1785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813727
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1112/s0025579300004745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062055610
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1214/08-aop415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390130
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1214/aop/1024404279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403147
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1239/aap/1029955194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440401
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1239/aap/1086957574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440596
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1239/aap/1127483738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440674
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1239/aap/1363354101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064441088
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.433806.a schema:alternateName Weierstrass Institute for Applied Analysis and Stochastics
153 schema:name Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117, Berlin, Germany
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
156 schema:name Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069, Ulm, Germany
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...