On Global Stability for Lifschitz–Slyozov–Wagner Like Equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03

AUTHORS

Joseph G. Conlon, Barbara Niethammer

ABSTRACT

This paper is concerned with the stability and asymptotic stability at large time of solutions to a system of equations, which includes the Lifschitz–Slyozov–Wagner (LSW) system in the case when the initial data has compact support. The main result of the paper is a proof of weak global asymptotic stability for LSW like systems. Previously strong local asymptotic stability results were obtained by Niethammer and Velázquez for the LSW system with initial data of compact support. Comparison to a quadratic model plays an important part in the proof of the main theorem when the initial data is critical. The quadratic model extends the linear model of Carr and Penrose, and has a time invariant solution which decays exponentially at the edge of its support in the same way as the infinitely differentiable self-similar solution of the LSW model. More... »

PAGES

1251-1291

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-014-0927-9

DOI

http://dx.doi.org/10.1007/s10955-014-0927-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026305604


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics, University of Michigan, 48109-1109, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conlon", 
        "givenName": "Joseph G.", 
        "id": "sg:person.01275345710.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niethammer", 
        "givenName": "Barbara", 
        "id": "sg:person.012135443305.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012135443305.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-3697(61)90054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000441444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(61)90054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000441444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605300500481533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012692459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-78214-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015295700", 
          "https://doi.org/10.1007/978-0-387-78214-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-78214-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015295700", 
          "https://doi.org/10.1007/978-0-387-78214-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004546215920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015899141", 
          "https://doi.org/10.1023/a:1004546215920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bbpc.19610650704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034744834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(98)00188-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038170054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2006.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051326086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-011-0398-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052657862", 
          "https://doi.org/10.1007/s00205-011-0398-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/13/4/314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059108950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040618047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062845360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036141001387471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036141098338211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062876548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2005.54.2598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067513503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2006.55.2854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067513598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098710084"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "This paper is concerned with the stability and asymptotic stability at large time of solutions to a system of equations, which includes the Lifschitz\u2013Slyozov\u2013Wagner (LSW) system in the case when the initial data has compact support. The main result of the paper is a proof of weak global asymptotic stability for LSW like systems. Previously strong local asymptotic stability results were obtained by Niethammer and Vel\u00e1zquez for the LSW system with initial data of compact support. Comparison to a quadratic model plays an important part in the proof of the main theorem when the initial data is critical. The quadratic model extends the linear model of Carr and Penrose, and has a time invariant solution which decays exponentially at the edge of its support in the same way as the infinitely differentiable self-similar solution of the LSW model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-014-0927-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3056292", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3065188", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "154"
      }
    ], 
    "name": "On Global Stability for Lifschitz\u2013Slyozov\u2013Wagner Like Equations", 
    "pagination": "1251-1291", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7d5155d1a4b9733c95405aad9f89995f2f51f577678349bac376c3ed383d2dfc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-014-0927-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026305604"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-014-0927-9", 
      "https://app.dimensions.ai/details/publication/pub.1026305604"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-014-0927-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-014-0927-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-014-0927-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-014-0927-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-014-0927-9'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-014-0927-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N865c6ac6bca54863bc222fead7d4d168
4 schema:citation sg:pub.10.1007/978-0-387-78214-0
5 sg:pub.10.1007/s00205-011-0398-y
6 sg:pub.10.1023/a:1004546215920
7 https://doi.org/10.1002/bbpc.19610650704
8 https://doi.org/10.1016/0022-3697(61)90054-3
9 https://doi.org/10.1016/j.physd.2006.07.026
10 https://doi.org/10.1016/s0167-2789(98)00188-2
11 https://doi.org/10.1080/03605300500481533
12 https://doi.org/10.1088/0951-7715/13/4/314
13 https://doi.org/10.1090/gsm/058
14 https://doi.org/10.1137/040618047
15 https://doi.org/10.1137/s0036141001387471
16 https://doi.org/10.1137/s0036141098338211
17 https://doi.org/10.1512/iumj.2005.54.2598
18 https://doi.org/10.1512/iumj.2006.55.2854
19 schema:datePublished 2014-03
20 schema:datePublishedReg 2014-03-01
21 schema:description This paper is concerned with the stability and asymptotic stability at large time of solutions to a system of equations, which includes the Lifschitz–Slyozov–Wagner (LSW) system in the case when the initial data has compact support. The main result of the paper is a proof of weak global asymptotic stability for LSW like systems. Previously strong local asymptotic stability results were obtained by Niethammer and Velázquez for the LSW system with initial data of compact support. Comparison to a quadratic model plays an important part in the proof of the main theorem when the initial data is critical. The quadratic model extends the linear model of Carr and Penrose, and has a time invariant solution which decays exponentially at the edge of its support in the same way as the infinitely differentiable self-similar solution of the LSW model.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N16f2ead4d5ad43c19fc98873aef98752
26 Ne8dbdf87ed934b4bb35677e538b2a0a3
27 sg:journal.1040979
28 schema:name On Global Stability for Lifschitz–Slyozov–Wagner Like Equations
29 schema:pagination 1251-1291
30 schema:productId N05a54f4579dd43708b36654c2afe83e8
31 N0d46577a694b479bb690e3f88ca434db
32 N88e168ccf219408ca4bbd373d944b46c
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026305604
34 https://doi.org/10.1007/s10955-014-0927-9
35 schema:sdDatePublished 2019-04-10T14:10
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nfd9c613a336346948e635830fd25c837
38 schema:url http://link.springer.com/10.1007%2Fs10955-014-0927-9
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N05a54f4579dd43708b36654c2afe83e8 schema:name dimensions_id
43 schema:value pub.1026305604
44 rdf:type schema:PropertyValue
45 N0d46577a694b479bb690e3f88ca434db schema:name doi
46 schema:value 10.1007/s10955-014-0927-9
47 rdf:type schema:PropertyValue
48 N16f2ead4d5ad43c19fc98873aef98752 schema:issueNumber 5
49 rdf:type schema:PublicationIssue
50 N865c6ac6bca54863bc222fead7d4d168 rdf:first sg:person.01275345710.70
51 rdf:rest Nf65807c99ff448aea3d4c08c0722305a
52 N88e168ccf219408ca4bbd373d944b46c schema:name readcube_id
53 schema:value 7d5155d1a4b9733c95405aad9f89995f2f51f577678349bac376c3ed383d2dfc
54 rdf:type schema:PropertyValue
55 Ne8dbdf87ed934b4bb35677e538b2a0a3 schema:volumeNumber 154
56 rdf:type schema:PublicationVolume
57 Nf65807c99ff448aea3d4c08c0722305a rdf:first sg:person.012135443305.29
58 rdf:rest rdf:nil
59 Nfd9c613a336346948e635830fd25c837 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:grant.3056292 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-014-0927-9
68 rdf:type schema:MonetaryGrant
69 sg:grant.3065188 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-014-0927-9
70 rdf:type schema:MonetaryGrant
71 sg:journal.1040979 schema:issn 0022-4715
72 1572-9613
73 schema:name Journal of Statistical Physics
74 rdf:type schema:Periodical
75 sg:person.012135443305.29 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
76 schema:familyName Niethammer
77 schema:givenName Barbara
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012135443305.29
79 rdf:type schema:Person
80 sg:person.01275345710.70 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
81 schema:familyName Conlon
82 schema:givenName Joseph G.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70
84 rdf:type schema:Person
85 sg:pub.10.1007/978-0-387-78214-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015295700
86 https://doi.org/10.1007/978-0-387-78214-0
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s00205-011-0398-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052657862
89 https://doi.org/10.1007/s00205-011-0398-y
90 rdf:type schema:CreativeWork
91 sg:pub.10.1023/a:1004546215920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015899141
92 https://doi.org/10.1023/a:1004546215920
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/bbpc.19610650704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034744834
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0022-3697(61)90054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000441444
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.physd.2006.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051326086
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s0167-2789(98)00188-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038170054
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/03605300500481533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012692459
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1088/0951-7715/13/4/314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059108950
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1090/gsm/058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098710084
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1137/040618047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845360
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1137/s0036141001387471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875784
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1137/s0036141098338211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062876548
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1512/iumj.2005.54.2598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067513503
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1512/iumj.2006.55.2854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067513598
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.10388.32 schema:alternateName University of Bonn
119 schema:name Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115, Bonn, Germany
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
122 schema:name Department of Mathematics, University of Michigan, 48109-1109, Ann Arbor, MI, USA
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...