Parametric Representation of 3D Grain Ensembles in Polycrystalline Microstructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Aaron Spettl, Thomas Werz, Carl E. Krill, Volker Schmidt

ABSTRACT

As a straightforward generalization of the well-known Voronoi construction, Laguerre tessellations have long found application in the modelling, analysis and simulation of polycrystalline microstructures. The application of Laguerre tessellations to real (as opposed to computed) microstructures—such as those obtained by modern 3D characterization techniques like X-ray microtomography or focused-ion-beam serial sectioning—is hindered by the mathematical difficulty of determining the correct seed location and weighting factor for each of the grains in the measured volume. In this paper, we propose an alternative to the Laguerre approach, representing grain ensembles with convex cells parametrized by orthogonal regression with respect to 3D image data. Applying our algorithm to artificial microstructures and to microtomographic data sets of an Al-5 wt% Cu alloy, we demonstrate that the new approach represents statistical features of the underlying data—like distributions of grain sizes and coordination numbers—as well as or better than a recently introduced approximation method based on the Laguerre tessellation; furthermore, our method reproduces the local arrangement of grains (i.e., grain shapes and connectivities) much more accurately. The additional computational cost associated with orthogonal regression is marginal. More... »

PAGES

913-928

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-013-0893-7

DOI

http://dx.doi.org/10.1007/s10955-013-0893-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012073459


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spettl", 
        "givenName": "Aaron", 
        "id": "sg:person.0600367022.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600367022.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Micro and Nanomaterials, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werz", 
        "givenName": "Thomas", 
        "id": "sg:person.011244344761.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011244344761.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Micro and Nanomaterials, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krill", 
        "givenName": "Carl E.", 
        "id": "sg:person.011024346073.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011024346073.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.matchar.2014.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000194570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2010.10.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006314821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/zkri.2012.1438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011763491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13642819608239126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012539648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012953253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(98)00451-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022510426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13642819708202339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024267653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13642819608239125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026406745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adem.201000258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026714111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2003.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036509176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889813002604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039255842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02664760802188112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044524625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s000186780000272x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045949466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-583x(02)01689-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048737061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-583x(02)01689-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048737061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjap:2004203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056959253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/624298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058820080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2007.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067969361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.94-96.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072150886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5566/ias.v25.p87-93", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072988723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470317013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109496296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496296", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "As a straightforward generalization of the well-known Voronoi construction, Laguerre tessellations have long found application in the modelling, analysis and simulation of polycrystalline microstructures. The application of Laguerre tessellations to real (as opposed to computed) microstructures\u2014such as those obtained by modern 3D characterization techniques like X-ray microtomography or focused-ion-beam serial sectioning\u2014is hindered by the mathematical difficulty of determining the correct seed location and weighting factor for each of the grains in the measured volume. In this paper, we propose an alternative to the Laguerre approach, representing grain ensembles with convex cells parametrized by orthogonal regression with respect to 3D image data. Applying our algorithm to artificial microstructures and to microtomographic data sets of an Al-5 wt% Cu alloy, we demonstrate that the new approach represents statistical features of the underlying data\u2014like distributions of grain sizes and coordination numbers\u2014as well as or better than a recently introduced approximation method based on the Laguerre tessellation; furthermore, our method reproduces the local arrangement of grains (i.e., grain shapes and connectivities) much more accurately. The additional computational cost associated with orthogonal regression is marginal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-013-0893-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "154"
      }
    ], 
    "name": "Parametric Representation of 3D Grain Ensembles in Polycrystalline Microstructures", 
    "pagination": "913-928", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3986297e463d05e8bbaa30fc06f954084951c98014cc07f3c37a85cbde081a54"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-013-0893-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012073459"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-013-0893-7", 
      "https://app.dimensions.ai/details/publication/pub.1012073459"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000582.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-013-0893-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-013-0893-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-013-0893-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-013-0893-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-013-0893-7'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-013-0893-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N99450d9b15ac4533afa75eed82234b67
4 schema:citation sg:pub.10.1007/978-1-4899-3324-9
5 https://app.dimensions.ai/details/publication/pub.1109496296
6 https://doi.org/10.1002/9780470317013
7 https://doi.org/10.1002/adem.201000258
8 https://doi.org/10.1016/j.actamat.2005.11.015
9 https://doi.org/10.1016/j.commatsci.2003.10.006
10 https://doi.org/10.1016/j.matchar.2014.01.022
11 https://doi.org/10.1016/j.scriptamat.2010.10.040
12 https://doi.org/10.1016/s0022-0248(98)00451-5
13 https://doi.org/10.1016/s0168-583x(02)01689-0
14 https://doi.org/10.1017/s000186780000272x
15 https://doi.org/10.1051/epjap:2004203
16 https://doi.org/10.1080/02664760802188112
17 https://doi.org/10.1080/13642819608239125
18 https://doi.org/10.1080/13642819608239126
19 https://doi.org/10.1080/13642819708202339
20 https://doi.org/10.1086/624298
21 https://doi.org/10.1107/s0021889813002604
22 https://doi.org/10.1524/zkri.2012.1438
23 https://doi.org/10.1557/mrs2007.64
24 https://doi.org/10.4028/www.scientific.net/msf.94-96.301
25 https://doi.org/10.5566/ias.v25.p87-93
26 schema:datePublished 2014-02
27 schema:datePublishedReg 2014-02-01
28 schema:description As a straightforward generalization of the well-known Voronoi construction, Laguerre tessellations have long found application in the modelling, analysis and simulation of polycrystalline microstructures. The application of Laguerre tessellations to real (as opposed to computed) microstructures—such as those obtained by modern 3D characterization techniques like X-ray microtomography or focused-ion-beam serial sectioning—is hindered by the mathematical difficulty of determining the correct seed location and weighting factor for each of the grains in the measured volume. In this paper, we propose an alternative to the Laguerre approach, representing grain ensembles with convex cells parametrized by orthogonal regression with respect to 3D image data. Applying our algorithm to artificial microstructures and to microtomographic data sets of an Al-5 wt% Cu alloy, we demonstrate that the new approach represents statistical features of the underlying data—like distributions of grain sizes and coordination numbers—as well as or better than a recently introduced approximation method based on the Laguerre tessellation; furthermore, our method reproduces the local arrangement of grains (i.e., grain shapes and connectivities) much more accurately. The additional computational cost associated with orthogonal regression is marginal.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N809e89230343497d981e423a90c0b626
33 Naa033a158b8b4b24ad0ee4af5c76a029
34 sg:journal.1040979
35 schema:name Parametric Representation of 3D Grain Ensembles in Polycrystalline Microstructures
36 schema:pagination 913-928
37 schema:productId N0a08ef5913674ca58ee310ce264513cf
38 N96fc1bc855b54af8a0b1fe1571eca59f
39 Nbab957693d0f4a5f93233220f2957f3d
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012073459
41 https://doi.org/10.1007/s10955-013-0893-7
42 schema:sdDatePublished 2019-04-10T13:29
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nb414342e6d9143848d14384e9cf5416b
45 schema:url http://link.springer.com/10.1007%2Fs10955-013-0893-7
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0a08ef5913674ca58ee310ce264513cf schema:name doi
50 schema:value 10.1007/s10955-013-0893-7
51 rdf:type schema:PropertyValue
52 N5807525d966f49fdab71f9f3fae6ff70 rdf:first sg:person.01051347101.48
53 rdf:rest rdf:nil
54 N7a8b2a5e59f74e38b83db4ff4bd72a98 rdf:first sg:person.011024346073.56
55 rdf:rest N5807525d966f49fdab71f9f3fae6ff70
56 N809e89230343497d981e423a90c0b626 schema:issueNumber 4
57 rdf:type schema:PublicationIssue
58 N8a40c1f7d50e410d8ec6818c0ae33dc5 rdf:first sg:person.011244344761.44
59 rdf:rest N7a8b2a5e59f74e38b83db4ff4bd72a98
60 N96fc1bc855b54af8a0b1fe1571eca59f schema:name dimensions_id
61 schema:value pub.1012073459
62 rdf:type schema:PropertyValue
63 N99450d9b15ac4533afa75eed82234b67 rdf:first sg:person.0600367022.78
64 rdf:rest N8a40c1f7d50e410d8ec6818c0ae33dc5
65 Naa033a158b8b4b24ad0ee4af5c76a029 schema:volumeNumber 154
66 rdf:type schema:PublicationVolume
67 Nb414342e6d9143848d14384e9cf5416b schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nbab957693d0f4a5f93233220f2957f3d schema:name readcube_id
70 schema:value 3986297e463d05e8bbaa30fc06f954084951c98014cc07f3c37a85cbde081a54
71 rdf:type schema:PropertyValue
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:journal.1040979 schema:issn 0022-4715
79 1572-9613
80 schema:name Journal of Statistical Physics
81 rdf:type schema:Periodical
82 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
83 schema:familyName Schmidt
84 schema:givenName Volker
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
86 rdf:type schema:Person
87 sg:person.011024346073.56 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
88 schema:familyName Krill
89 schema:givenName Carl E.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011024346073.56
91 rdf:type schema:Person
92 sg:person.011244344761.44 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
93 schema:familyName Werz
94 schema:givenName Thomas
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011244344761.44
96 rdf:type schema:Person
97 sg:person.0600367022.78 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
98 schema:familyName Spettl
99 schema:givenName Aaron
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600367022.78
101 rdf:type schema:Person
102 sg:pub.10.1007/978-1-4899-3324-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705894
103 https://doi.org/10.1007/978-1-4899-3324-9
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1109496296 schema:CreativeWork
106 https://doi.org/10.1002/9780470317013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496296
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/adem.201000258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026714111
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.actamat.2005.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012953253
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.commatsci.2003.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036509176
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.matchar.2014.01.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000194570
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.scriptamat.2010.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006314821
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0022-0248(98)00451-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022510426
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0168-583x(02)01689-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048737061
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1017/s000186780000272x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045949466
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1051/epjap:2004203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056959253
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/02664760802188112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044524625
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/13642819608239125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026406745
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/13642819608239126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012539648
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/13642819708202339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024267653
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1086/624298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058820080
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1107/s0021889813002604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039255842
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1524/zkri.2012.1438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011763491
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1557/mrs2007.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969361
141 rdf:type schema:CreativeWork
142 https://doi.org/10.4028/www.scientific.net/msf.94-96.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072150886
143 rdf:type schema:CreativeWork
144 https://doi.org/10.5566/ias.v25.p87-93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072988723
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
147 schema:name Institute of Micro and Nanomaterials, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
148 Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069, Ulm, Germany
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...