Two-Dimensional SIR Epidemics with Long Range Infection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10

AUTHORS

Peter Grassberger

ABSTRACT

We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p(x)∼|x|−σ−2 for the probability that a site can infect another site a distance vector x apart. As in I we present detailed results for the critical case, for the supercritical case with σ=2, and for the supercritical case with 0<σ<2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For σ=2 we find generic power laws with σ-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on σ in the regime 0<σ<2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for σ slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder et al. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same. More... »

PAGES

289-311

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-013-0824-7

DOI

http://dx.doi.org/10.1007/s10955-013-0824-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017190679


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "JSC, FZ J\u00fclich, 52425, J\u00fclich, Germany", 
            "Max Planck Institute for the Physics of Complex Systems, N\u00f6thnitzer Strasse 38, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grassberger", 
        "givenName": "Peter", 
        "id": "sg:person.0704113004.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/335305.335325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006597572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01661575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007200270", 
          "https://doi.org/10.1007/bf01661575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01661575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007200270", 
          "https://doi.org/10.1007/bf01661575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2006/01/p01004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020483595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2006/01/p01004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020483595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(77)90139-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021170371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(77)90139-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021170371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2002-00251-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021280988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022949845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.016128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023034919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023509136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023509136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.037102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027343357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.037102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027343357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/82/48005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028763904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.011128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029820700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.011128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029820700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.10042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030327325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01205489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030886606", 
          "https://doi.org/10.1007/bf01205489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01205489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030886606", 
          "https://doi.org/10.1007/bf01205489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031337168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.5305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031337168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.025703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031895707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.025703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031895707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/41/18/185005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035655514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/34/38/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035924919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510050596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035942347", 
          "https://doi.org/10.1007/s100510050596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.036101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037026272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.036101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037026272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037119647", 
          "https://doi.org/10.1038/nature04292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037119647", 
          "https://doi.org/10.1038/nature04292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037119647", 
          "https://doi.org/10.1038/nature04292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01022985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037524555", 
          "https://doi.org/10.1007/bf01022985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041789299", 
          "https://doi.org/10.1038/nphys1932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043041300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.056709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043041300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.026114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043683964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.026114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043683964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(82)90036-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044122994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2010.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048598510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.1022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051182754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-86995-1.50054-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052035160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.018302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052262651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.018302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052262651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/14/6/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/16/17/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059066573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/22/6/024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059070656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/25/21/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059072535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.187.732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060443251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.187.732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060443251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.1.4464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.1.4464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.6545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.8.281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.8.281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.29.917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060776597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.29.917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060776597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.178301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.178301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009117904000000577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389178"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p(x)\u223c|x|\u2212\u03c3\u22122 for the probability that a site can infect another site a distance vector x apart. As in I we present detailed results for the critical case, for the supercritical case with \u03c3=2, and for the supercritical case with 0<\u03c3<2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For \u03c3=2 we find generic power laws with \u03c3-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on \u03c3 in the regime 0<\u03c3<2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for \u03c3 slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder et al. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-013-0824-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "153"
      }
    ], 
    "name": "Two-Dimensional SIR Epidemics with Long Range Infection", 
    "pagination": "289-311", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51e734a052a23a3f0b36d4e0d421c810d3c62746600b73d38efd2850b2add1e0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-013-0824-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017190679"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-013-0824-7", 
      "https://app.dimensions.ai/details/publication/pub.1017190679"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-013-0824-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-013-0824-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-013-0824-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-013-0824-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-013-0824-7'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-013-0824-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N51f8e5790a0346f99b4b277b5938beeb
4 schema:citation sg:pub.10.1007/bf01022985
5 sg:pub.10.1007/bf01205489
6 sg:pub.10.1007/bf01661575
7 sg:pub.10.1007/s100510050596
8 sg:pub.10.1038/nature04292
9 sg:pub.10.1038/nphys1932
10 https://doi.org/10.1002/rsa.10042
11 https://doi.org/10.1002/rsa.1022
12 https://doi.org/10.1016/0025-5564(82)90036-0
13 https://doi.org/10.1016/0375-9601(77)90139-6
14 https://doi.org/10.1016/b978-0-444-86995-1.50054-8
15 https://doi.org/10.1016/j.physa.2010.10.024
16 https://doi.org/10.1016/j.physrep.2010.11.002
17 https://doi.org/10.1088/0305-4470/14/6/017
18 https://doi.org/10.1088/0305-4470/16/17/001
19 https://doi.org/10.1088/0305-4470/22/6/024
20 https://doi.org/10.1088/0305-4470/25/21/009
21 https://doi.org/10.1088/0305-4470/34/38/303
22 https://doi.org/10.1088/1742-5468/2006/01/p01004
23 https://doi.org/10.1088/1751-8113/41/18/185005
24 https://doi.org/10.1103/physrev.187.732
25 https://doi.org/10.1103/physrevb.1.4464
26 https://doi.org/10.1103/physrevb.28.6545
27 https://doi.org/10.1103/physrevb.8.281
28 https://doi.org/10.1103/physreve.57.230
29 https://doi.org/10.1103/physreve.65.056709
30 https://doi.org/10.1103/physreve.66.016128
31 https://doi.org/10.1103/physreve.66.037102
32 https://doi.org/10.1103/physreve.67.036101
33 https://doi.org/10.1103/physreve.70.026114
34 https://doi.org/10.1103/physreve.86.011128
35 https://doi.org/10.1103/physrevlett.29.917
36 https://doi.org/10.1103/physrevlett.86.5305
37 https://doi.org/10.1103/physrevlett.89.025703
38 https://doi.org/10.1103/physrevlett.91.018302
39 https://doi.org/10.1103/physrevlett.98.178301
40 https://doi.org/10.1145/335305.335325
41 https://doi.org/10.1209/0295-5075/82/48005
42 https://doi.org/10.1209/epl/i2002-00251-7
43 https://doi.org/10.1214/009117904000000577
44 schema:datePublished 2013-10
45 schema:datePublishedReg 2013-10-01
46 schema:description We extend a recent study of susceptible-infected-removed epidemic processes with long range infection (referred to as I in the following) from 1-dimensional lattices to lattices in two dimensions. As in I we use hashing to simulate very large lattices for which finite size effects can be neglected, in spite of the assumed power law p(x)∼|x|−σ−2 for the probability that a site can infect another site a distance vector x apart. As in I we present detailed results for the critical case, for the supercritical case with σ=2, and for the supercritical case with 0<σ<2. For the latter we verify the stretched exponential growth of the infected cluster with time predicted by M. Biskup. For σ=2 we find generic power laws with σ-dependent exponents in the supercritical phase, but no Kosterlitz-Thouless (KT) like critical point as in 1-d. Instead of diverging exponentially with the distance from the critical point, the correlation length increases with an inverse power, as in an ordinary critical point. Finally we study the dependence of the critical exponents on σ in the regime 0<σ<2, and compare with field theoretic predictions. In particular we discuss in detail whether the critical behavior for σ slightly less than 2 is in the short range universality class, as conjectured recently by F. Linder et al. As in I we also consider a modified version of the model where only some of the contacts are long range, the others being between nearest neighbors. If the number of the latter reaches the percolation threshold, the critical behavior is changed but the supercritical behavior stays qualitatively the same.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N32135f274c1243e0a308a2215f526e59
51 Nf5c556fa06b340b98324ea0368dc92ad
52 sg:journal.1040979
53 schema:name Two-Dimensional SIR Epidemics with Long Range Infection
54 schema:pagination 289-311
55 schema:productId N3411e9b9b4934dd6b6aa69a5c708d5d4
56 Ne1788d762f834e71a425dd57550f2525
57 Nef106ad28d4643668a86730d6633f21f
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017190679
59 https://doi.org/10.1007/s10955-013-0824-7
60 schema:sdDatePublished 2019-04-10T15:51
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N3417fe7dfaf94a16b9643e386bd9b923
63 schema:url http://link.springer.com/10.1007%2Fs10955-013-0824-7
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N32135f274c1243e0a308a2215f526e59 schema:volumeNumber 153
68 rdf:type schema:PublicationVolume
69 N3411e9b9b4934dd6b6aa69a5c708d5d4 schema:name doi
70 schema:value 10.1007/s10955-013-0824-7
71 rdf:type schema:PropertyValue
72 N3417fe7dfaf94a16b9643e386bd9b923 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N51f8e5790a0346f99b4b277b5938beeb rdf:first sg:person.0704113004.84
75 rdf:rest rdf:nil
76 Ne1788d762f834e71a425dd57550f2525 schema:name dimensions_id
77 schema:value pub.1017190679
78 rdf:type schema:PropertyValue
79 Nef106ad28d4643668a86730d6633f21f schema:name readcube_id
80 schema:value 51e734a052a23a3f0b36d4e0d421c810d3c62746600b73d38efd2850b2add1e0
81 rdf:type schema:PropertyValue
82 Nf5c556fa06b340b98324ea0368dc92ad schema:issueNumber 2
83 rdf:type schema:PublicationIssue
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1040979 schema:issn 0022-4715
91 1572-9613
92 schema:name Journal of Statistical Physics
93 rdf:type schema:Periodical
94 sg:person.0704113004.84 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
95 schema:familyName Grassberger
96 schema:givenName Peter
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84
98 rdf:type schema:Person
99 sg:pub.10.1007/bf01022985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037524555
100 https://doi.org/10.1007/bf01022985
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01205489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030886606
103 https://doi.org/10.1007/bf01205489
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf01661575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007200270
106 https://doi.org/10.1007/bf01661575
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s100510050596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035942347
109 https://doi.org/10.1007/s100510050596
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature04292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037119647
112 https://doi.org/10.1038/nature04292
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nphys1932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041789299
115 https://doi.org/10.1038/nphys1932
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/rsa.10042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030327325
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/rsa.1022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051182754
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0025-5564(82)90036-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044122994
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0375-9601(77)90139-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021170371
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/b978-0-444-86995-1.50054-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052035160
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.physa.2010.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048598510
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.physrep.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022949845
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/0305-4470/14/6/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065697
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/0305-4470/16/17/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059066573
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1088/0305-4470/22/6/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059070656
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0305-4470/25/21/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059072535
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/0305-4470/34/38/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035924919
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/1742-5468/2006/01/p01004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020483595
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/1751-8113/41/18/185005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035655514
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrev.187.732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060443251
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.1.4464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060518491
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.28.6545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533721
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.8.281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060629012
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physreve.57.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023509136
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physreve.65.056709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043041300
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physreve.66.016128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023034919
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physreve.66.037102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027343357
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physreve.67.036101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037026272
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physreve.70.026114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043683964
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physreve.86.011128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029820700
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.29.917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060776597
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.86.5305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031337168
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.89.025703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031895707
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.91.018302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052262651
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.98.178301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833969
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1145/335305.335325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006597572
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1209/0295-5075/82/48005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028763904
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1209/epl/i2002-00251-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021280988
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1214/009117904000000577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389178
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
186 schema:name JSC, FZ Jülich, 52425, Jülich, Germany
187 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187, Dresden, Germany
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...