A Series Expansion for the Time Autocorrelation of Dynamical Variables View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09

AUTHORS

Alberto Mario Maiocchi, Andrea Carati, Antonio Giorgilli

ABSTRACT

We present here a general iterative formula which gives a (formal) series expansion for the time autocorrelation of smooth dynamical variables, for all Hamiltonian systems endowed with an invariant measure. We add some criteria, theoretical in nature, which enable one to decide whether the decay of the correlations is exponentially fast or not. One of these criteria is implemented numerically for the case of the Fermi-Pasta-Ulam system, and we find indications which might suggest a sub-exponential decay of the time autocorrelation of a relevant dynamical variable. More... »

PAGES

1054-1071

References to SciGraph publications

Journal

TITLE

Journal of Statistical Physics

ISSUE

6

VOLUME

148

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x

DOI

http://dx.doi.org/10.1007/s10955-012-0575-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002924499


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maiocchi", 
        "givenName": "Alberto Mario", 
        "id": "sg:person.015366730074.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carati", 
        "givenName": "Andrea", 
        "id": "sg:person.01364554612.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364554612.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgilli", 
        "givenName": "Antonio", 
        "id": "sg:person.010532704656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.76.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-007-9332-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453702", 
          "https://doi.org/10.1007/s10955-007-9332-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-012-0568-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016793892", 
          "https://doi.org/10.1007/s10955-012-0568-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022339099", 
          "https://doi.org/10.1007/s00220-010-1039-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022339099", 
          "https://doi.org/10.1007/s00220-010-1039-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-012-1522-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040875907", 
          "https://doi.org/10.1007/s00220-012-1522-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01175684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045547916", 
          "https://doi.org/10.1007/bf01175684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01175684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045547916", 
          "https://doi.org/10.1007/bf01175684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.17.5.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048475791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2004.159.1275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071866822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/afst.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073135197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/surv/127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098734316"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "We present here a general iterative formula which gives a (formal) series expansion for the time autocorrelation of smooth dynamical variables, for all Hamiltonian systems endowed with an invariant measure. We add some criteria, theoretical in nature, which enable one to decide whether the decay of the correlations is exponentially fast or not. One of these criteria is implemented numerically for the case of the Fermi-Pasta-Ulam system, and we find indications which might suggest a sub-exponential decay of the time autocorrelation of a relevant dynamical variable.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-012-0575-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "148"
      }
    ], 
    "name": "A Series Expansion for the Time Autocorrelation of Dynamical Variables", 
    "pagination": "1054-1071", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0dedb260a4325773b76bbe7d212e2b1bae7d52c179a0ffcd9de9f2523daea7ed"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-012-0575-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002924499"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-012-0575-x", 
      "https://app.dimensions.ai/details/publication/pub.1002924499"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-012-0575-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-012-0575-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6ee9454bea4a41b2ab4f88bdb774ebf8
4 schema:citation sg:pub.10.1007/bf01175684
5 sg:pub.10.1007/s00220-010-1039-2
6 sg:pub.10.1007/s00220-012-1522-z
7 sg:pub.10.1007/s10955-007-9332-y
8 sg:pub.10.1007/s10955-012-0568-9
9 https://doi.org/10.1073/pnas.17.5.315
10 https://doi.org/10.1090/surv/127
11 https://doi.org/10.1103/physreve.76.022104
12 https://doi.org/10.1103/physrevlett.56.405
13 https://doi.org/10.4007/annals.2004.159.1275
14 https://doi.org/10.5802/afst.108
15 schema:datePublished 2012-09
16 schema:datePublishedReg 2012-09-01
17 schema:description We present here a general iterative formula which gives a (formal) series expansion for the time autocorrelation of smooth dynamical variables, for all Hamiltonian systems endowed with an invariant measure. We add some criteria, theoretical in nature, which enable one to decide whether the decay of the correlations is exponentially fast or not. One of these criteria is implemented numerically for the case of the Fermi-Pasta-Ulam system, and we find indications which might suggest a sub-exponential decay of the time autocorrelation of a relevant dynamical variable.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N2a77e4de4b51410bb1f432d1e743a816
22 N65fe91a4ba334f1e89128aa09aff2f24
23 sg:journal.1040979
24 schema:name A Series Expansion for the Time Autocorrelation of Dynamical Variables
25 schema:pagination 1054-1071
26 schema:productId Na09f4d30286e4938bc7358d84ab30c7e
27 Nb1dfadddc5f74f3795a6d399357fa6ea
28 Ncab9fdb787f949658331bfc2a624bfcb
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002924499
30 https://doi.org/10.1007/s10955-012-0575-x
31 schema:sdDatePublished 2019-04-10T17:31
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N6433b1d70c944366b69b6e654ffdc4bb
34 schema:url http://link.springer.com/10.1007%2Fs10955-012-0575-x
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N25eb965195054a62823360fac1792ed8 rdf:first sg:person.01364554612.00
39 rdf:rest Ne55489ac78b34c378d00e3dac093d019
40 N2a77e4de4b51410bb1f432d1e743a816 schema:volumeNumber 148
41 rdf:type schema:PublicationVolume
42 N6433b1d70c944366b69b6e654ffdc4bb schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N65fe91a4ba334f1e89128aa09aff2f24 schema:issueNumber 6
45 rdf:type schema:PublicationIssue
46 N6ee9454bea4a41b2ab4f88bdb774ebf8 rdf:first sg:person.015366730074.31
47 rdf:rest N25eb965195054a62823360fac1792ed8
48 Na09f4d30286e4938bc7358d84ab30c7e schema:name doi
49 schema:value 10.1007/s10955-012-0575-x
50 rdf:type schema:PropertyValue
51 Nb1dfadddc5f74f3795a6d399357fa6ea schema:name readcube_id
52 schema:value 0dedb260a4325773b76bbe7d212e2b1bae7d52c179a0ffcd9de9f2523daea7ed
53 rdf:type schema:PropertyValue
54 Ncab9fdb787f949658331bfc2a624bfcb schema:name dimensions_id
55 schema:value pub.1002924499
56 rdf:type schema:PropertyValue
57 Ne55489ac78b34c378d00e3dac093d019 rdf:first sg:person.010532704656.30
58 rdf:rest rdf:nil
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1040979 schema:issn 0022-4715
66 1572-9613
67 schema:name Journal of Statistical Physics
68 rdf:type schema:Periodical
69 sg:person.010532704656.30 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
70 schema:familyName Giorgilli
71 schema:givenName Antonio
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
73 rdf:type schema:Person
74 sg:person.01364554612.00 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
75 schema:familyName Carati
76 schema:givenName Andrea
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364554612.00
78 rdf:type schema:Person
79 sg:person.015366730074.31 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
80 schema:familyName Maiocchi
81 schema:givenName Alberto Mario
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31
83 rdf:type schema:Person
84 sg:pub.10.1007/bf01175684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045547916
85 https://doi.org/10.1007/bf01175684
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00220-010-1039-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022339099
88 https://doi.org/10.1007/s00220-010-1039-2
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00220-012-1522-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040875907
91 https://doi.org/10.1007/s00220-012-1522-z
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s10955-007-9332-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453702
94 https://doi.org/10.1007/s10955-007-9332-y
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10955-012-0568-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016793892
97 https://doi.org/10.1007/s10955-012-0568-9
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1073/pnas.17.5.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048475791
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1090/surv/127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098734316
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreve.76.022104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006323355
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevlett.56.405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793470
106 rdf:type schema:CreativeWork
107 https://doi.org/10.4007/annals.2004.159.1275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866822
108 rdf:type schema:CreativeWork
109 https://doi.org/10.5802/afst.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073135197
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
112 schema:name Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133, Milano, Italy
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...