A Series Expansion for the Time Autocorrelation of Dynamical Variables View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09

AUTHORS

Alberto Mario Maiocchi, Andrea Carati, Antonio Giorgilli

ABSTRACT

We present here a general iterative formula which gives a (formal) series expansion for the time autocorrelation of smooth dynamical variables, for all Hamiltonian systems endowed with an invariant measure. We add some criteria, theoretical in nature, which enable one to decide whether the decay of the correlations is exponentially fast or not. One of these criteria is implemented numerically for the case of the Fermi-Pasta-Ulam system, and we find indications which might suggest a sub-exponential decay of the time autocorrelation of a relevant dynamical variable. More... »

PAGES

1054-1071

References to SciGraph publications

Journal

TITLE

Journal of Statistical Physics

ISSUE

6

VOLUME

148

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x

DOI

http://dx.doi.org/10.1007/s10955-012-0575-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002924499


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maiocchi", 
        "givenName": "Alberto Mario", 
        "id": "sg:person.015366730074.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carati", 
        "givenName": "Andrea", 
        "id": "sg:person.01364554612.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364554612.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgilli", 
        "givenName": "Antonio", 
        "id": "sg:person.010532704656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.76.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-007-9332-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453702", 
          "https://doi.org/10.1007/s10955-007-9332-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-012-0568-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016793892", 
          "https://doi.org/10.1007/s10955-012-0568-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022339099", 
          "https://doi.org/10.1007/s00220-010-1039-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022339099", 
          "https://doi.org/10.1007/s00220-010-1039-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-012-1522-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040875907", 
          "https://doi.org/10.1007/s00220-012-1522-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01175684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045547916", 
          "https://doi.org/10.1007/bf01175684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01175684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045547916", 
          "https://doi.org/10.1007/bf01175684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.17.5.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048475791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2004.159.1275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071866822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/afst.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073135197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/surv/127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098734316"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "We present here a general iterative formula which gives a (formal) series expansion for the time autocorrelation of smooth dynamical variables, for all Hamiltonian systems endowed with an invariant measure. We add some criteria, theoretical in nature, which enable one to decide whether the decay of the correlations is exponentially fast or not. One of these criteria is implemented numerically for the case of the Fermi-Pasta-Ulam system, and we find indications which might suggest a sub-exponential decay of the time autocorrelation of a relevant dynamical variable.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-012-0575-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "148"
      }
    ], 
    "name": "A Series Expansion for the Time Autocorrelation of Dynamical Variables", 
    "pagination": "1054-1071", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0dedb260a4325773b76bbe7d212e2b1bae7d52c179a0ffcd9de9f2523daea7ed"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-012-0575-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002924499"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-012-0575-x", 
      "https://app.dimensions.ai/details/publication/pub.1002924499"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-012-0575-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0575-x'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-012-0575-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N83cf7b9b0bf448a8ab325eb56917a8f5
4 schema:citation sg:pub.10.1007/bf01175684
5 sg:pub.10.1007/s00220-010-1039-2
6 sg:pub.10.1007/s00220-012-1522-z
7 sg:pub.10.1007/s10955-007-9332-y
8 sg:pub.10.1007/s10955-012-0568-9
9 https://doi.org/10.1073/pnas.17.5.315
10 https://doi.org/10.1090/surv/127
11 https://doi.org/10.1103/physreve.76.022104
12 https://doi.org/10.1103/physrevlett.56.405
13 https://doi.org/10.4007/annals.2004.159.1275
14 https://doi.org/10.5802/afst.108
15 schema:datePublished 2012-09
16 schema:datePublishedReg 2012-09-01
17 schema:description We present here a general iterative formula which gives a (formal) series expansion for the time autocorrelation of smooth dynamical variables, for all Hamiltonian systems endowed with an invariant measure. We add some criteria, theoretical in nature, which enable one to decide whether the decay of the correlations is exponentially fast or not. One of these criteria is implemented numerically for the case of the Fermi-Pasta-Ulam system, and we find indications which might suggest a sub-exponential decay of the time autocorrelation of a relevant dynamical variable.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N312f6145073143d5b5e44b0e0ebaa927
22 Nd88d61b1759b440e92d3cfb72007d8c2
23 sg:journal.1040979
24 schema:name A Series Expansion for the Time Autocorrelation of Dynamical Variables
25 schema:pagination 1054-1071
26 schema:productId N0df9ee56a32b4ec3be227d29ecbca7f4
27 N448f60a746634df886d1fc6afbe7e3d7
28 Nf06991afb7cf4d9bb94002d5b6349e19
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002924499
30 https://doi.org/10.1007/s10955-012-0575-x
31 schema:sdDatePublished 2019-04-10T17:31
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N85a38e6696504f62b740dffd6f52fa7b
34 schema:url http://link.springer.com/10.1007%2Fs10955-012-0575-x
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0df9ee56a32b4ec3be227d29ecbca7f4 schema:name doi
39 schema:value 10.1007/s10955-012-0575-x
40 rdf:type schema:PropertyValue
41 N312f6145073143d5b5e44b0e0ebaa927 schema:volumeNumber 148
42 rdf:type schema:PublicationVolume
43 N448f60a746634df886d1fc6afbe7e3d7 schema:name readcube_id
44 schema:value 0dedb260a4325773b76bbe7d212e2b1bae7d52c179a0ffcd9de9f2523daea7ed
45 rdf:type schema:PropertyValue
46 N649e0b1931f1462dbd28213a184aa77d rdf:first sg:person.010532704656.30
47 rdf:rest rdf:nil
48 N83cf7b9b0bf448a8ab325eb56917a8f5 rdf:first sg:person.015366730074.31
49 rdf:rest Nb20563d564a143c19913de7361d60aa4
50 N85a38e6696504f62b740dffd6f52fa7b schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nb20563d564a143c19913de7361d60aa4 rdf:first sg:person.01364554612.00
53 rdf:rest N649e0b1931f1462dbd28213a184aa77d
54 Nd88d61b1759b440e92d3cfb72007d8c2 schema:issueNumber 6
55 rdf:type schema:PublicationIssue
56 Nf06991afb7cf4d9bb94002d5b6349e19 schema:name dimensions_id
57 schema:value pub.1002924499
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1040979 schema:issn 0022-4715
66 1572-9613
67 schema:name Journal of Statistical Physics
68 rdf:type schema:Periodical
69 sg:person.010532704656.30 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
70 schema:familyName Giorgilli
71 schema:givenName Antonio
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
73 rdf:type schema:Person
74 sg:person.01364554612.00 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
75 schema:familyName Carati
76 schema:givenName Andrea
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364554612.00
78 rdf:type schema:Person
79 sg:person.015366730074.31 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
80 schema:familyName Maiocchi
81 schema:givenName Alberto Mario
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31
83 rdf:type schema:Person
84 sg:pub.10.1007/bf01175684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045547916
85 https://doi.org/10.1007/bf01175684
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00220-010-1039-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022339099
88 https://doi.org/10.1007/s00220-010-1039-2
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00220-012-1522-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040875907
91 https://doi.org/10.1007/s00220-012-1522-z
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s10955-007-9332-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453702
94 https://doi.org/10.1007/s10955-007-9332-y
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s10955-012-0568-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016793892
97 https://doi.org/10.1007/s10955-012-0568-9
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1073/pnas.17.5.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048475791
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1090/surv/127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098734316
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreve.76.022104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006323355
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevlett.56.405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793470
106 rdf:type schema:CreativeWork
107 https://doi.org/10.4007/annals.2004.159.1275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866822
108 rdf:type schema:CreativeWork
109 https://doi.org/10.5802/afst.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073135197
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
112 schema:name Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133, Milano, Italy
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...