Extensive Adiabatic Invariants for Nonlinear Chains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09

AUTHORS

Antonio Giorgilli, Simone Paleari, Tiziano Penati

ABSTRACT

We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates. More... »

PAGES

1106-1134

References to SciGraph publications

  • 2008. Dynamics of Oscillator Chains in THE FERMI-PASTA-ULAM PROBLEM
  • 2008. The Fermi—Pasta—Ulam Problem and the Metastability Perspective in THE FERMI-PASTA-ULAM PROBLEM
  • 1989-12. Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part II in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-08. Time-Scales to Equipartition in the Fermi–Pasta–Ulam Problem: Finite-Size Effects and Thermodynamic Limit in JOURNAL OF STATISTICAL PHYSICS
  • 2009-06. The Fermi-Pasta-Ulam Problem: Scaling Laws vs. Initial Conditions in JOURNAL OF STATISTICAL PHYSICS
  • 1988-03. A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2007-08. An Averaging Theorem for Hamiltonian Dynamical Systems in the Thermodynamic Limit in JOURNAL OF STATISTICAL PHYSICS
  • 2010-07. Relaxation Times for Hamiltonian Systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1987-08. Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics in JOURNAL OF STATISTICAL PHYSICS
  • 2012-08. Exponentially Long Stability Times for a Nonlinear Lattice in the Thermodynamic Limit in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1993-05. Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems in JOURNAL OF STATISTICAL PHYSICS
  • 2007-12-01. Entropy and equilibrium states in classical statistical mechanics in STATISTICAL MECHANICS AND MATHEMATICAL PROBLEMS
  • 1994-07. Equipartition thresholds in chains of anharmonic oscillators in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9

    DOI

    http://dx.doi.org/10.1007/s10955-012-0568-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016793892


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Depart. of Mathematics \u201cF. Enriques\u201d, via Saldini, 50, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giorgilli", 
            "givenName": "Antonio", 
            "id": "sg:person.010532704656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Depart. of Mathematics \u201cF. Enriques\u201d, via Saldini, 50, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paleari", 
            "givenName": "Simone", 
            "id": "sg:person.012536754367.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536754367.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Depart. of Mathematics \u201cF. Enriques\u201d, via Saldini, 50, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Penati", 
            "givenName": "Tiziano", 
            "id": "sg:person.010451767147.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010451767147.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01058438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003681860", 
              "https://doi.org/10.1007/bf01058438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0112756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006102707", 
              "https://doi.org/10.1007/bfb0112756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0112756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006102707", 
              "https://doi.org/10.1007/bfb0112756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.022104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006323355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.022104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006323355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02188678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007649376", 
              "https://doi.org/10.1007/bf02188678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02188678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007649376", 
              "https://doi.org/10.1007/bf02188678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-007-9332-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453702", 
              "https://doi.org/10.1007/s10955-007-9332-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01019687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012658600", 
              "https://doi.org/10.1007/bf01019687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01218262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020365094", 
              "https://doi.org/10.1007/bf01218262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01218262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020365094", 
              "https://doi.org/10.1007/bf01218262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72995-2_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021282964", 
              "https://doi.org/10.1007/978-3-540-72995-2_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72995-2_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021282964", 
              "https://doi.org/10.1007/978-3-540-72995-2_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-010-1039-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022339099", 
              "https://doi.org/10.1007/s00220-010-1039-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-010-1039-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022339099", 
              "https://doi.org/10.1007/s00220-010-1039-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-008-9660-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025341457", 
              "https://doi.org/10.1007/s10955-008-9660-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2012.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033354892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s037016460002352x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040262708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2003.11.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040830291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1522-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040875907", 
              "https://doi.org/10.1007/s00220-012-1522-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-011-0277-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041003802", 
              "https://doi.org/10.1007/s10955-011-0277-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72995-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045412477", 
              "https://doi.org/10.1007/978-3-540-72995-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-72995-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045412477", 
              "https://doi.org/10.1007/978-3-540-72995-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(92)90074-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048657814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(92)90074-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048657814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01218157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051921197", 
              "https://doi.org/10.1007/bf01218157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01218157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051921197", 
              "https://doi.org/10.1007/bf01218157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100003224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053952207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100014249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053952843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphys:01982004305070700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056990681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1854278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057828319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2838458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057878074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1971v026n02abeh003827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058193998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.2.2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060467895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.2.2013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060467895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.22.1709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060468782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.22.1709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060468782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.28.3544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060471567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.28.3544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060471567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.31.1039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060473027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.31.1039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060473027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1113026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062866131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3934/dcds.2004.11.855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071733120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/coll/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098741864"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-09", 
        "datePublishedReg": "2012-09-01", 
        "description": "We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schr\u00f6dinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10955-012-0568-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "148"
          }
        ], 
        "name": "Extensive Adiabatic Invariants for Nonlinear Chains", 
        "pagination": "1106-1134", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "500430c9ae613340c86d93b832344f605d4b5d903ddfcf0aca32bcb889d3233a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10955-012-0568-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016793892"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10955-012-0568-9", 
          "https://app.dimensions.ai/details/publication/pub.1016793892"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000511.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10955-012-0568-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10955-012-0568-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N7c243bdbe5ca4dffb377750dc3d44560
    4 schema:citation sg:pub.10.1007/978-3-540-72995-2_2
    5 sg:pub.10.1007/978-3-540-72995-2_4
    6 sg:pub.10.1007/bf01019687
    7 sg:pub.10.1007/bf01058438
    8 sg:pub.10.1007/bf01218157
    9 sg:pub.10.1007/bf01218262
    10 sg:pub.10.1007/bf02188678
    11 sg:pub.10.1007/bfb0112756
    12 sg:pub.10.1007/s00220-010-1039-2
    13 sg:pub.10.1007/s00220-012-1522-z
    14 sg:pub.10.1007/s10955-007-9332-y
    15 sg:pub.10.1007/s10955-008-9660-6
    16 sg:pub.10.1007/s10955-011-0277-9
    17 https://doi.org/10.1016/0167-2789(92)90074-w
    18 https://doi.org/10.1016/j.physleta.2003.11.052
    19 https://doi.org/10.1016/j.physleta.2012.05.006
    20 https://doi.org/10.1017/s0305004100003224
    21 https://doi.org/10.1017/s0305004100014249
    22 https://doi.org/10.1017/s037016460002352x
    23 https://doi.org/10.1051/jphys:01982004305070700
    24 https://doi.org/10.1063/1.1854278
    25 https://doi.org/10.1063/1.2838458
    26 https://doi.org/10.1070/rm1971v026n02abeh003827
    27 https://doi.org/10.1090/coll/009
    28 https://doi.org/10.1103/physreva.2.2013
    29 https://doi.org/10.1103/physreva.22.1709
    30 https://doi.org/10.1103/physreva.28.3544
    31 https://doi.org/10.1103/physreva.31.1039
    32 https://doi.org/10.1103/physreve.76.022104
    33 https://doi.org/10.1137/1113026
    34 https://doi.org/10.3934/dcds.2004.11.855
    35 schema:datePublished 2012-09
    36 schema:datePublishedReg 2012-09-01
    37 schema:description We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf Na7f44b847bd9479bb5ae4f687d3f5126
    42 Nd4dda8c7594b45458050fdd6e9baef64
    43 sg:journal.1040979
    44 schema:name Extensive Adiabatic Invariants for Nonlinear Chains
    45 schema:pagination 1106-1134
    46 schema:productId N89cdc2c4cba84c9ebdd88a3eb5354776
    47 N95692785110f406e89f375d1e3eb1db6
    48 Nf5039508039247c0ba3ce1a8a0ef48d3
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016793892
    50 https://doi.org/10.1007/s10955-012-0568-9
    51 schema:sdDatePublished 2019-04-10T19:08
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher Nb3d327f98cc64639a85d395d3bac4b34
    54 schema:url http://link.springer.com/10.1007%2Fs10955-012-0568-9
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N68c3c6c6a2774dce8db9616b18a3263b schema:name Depart. of Mathematics “F. Enriques”, via Saldini, 50, Milan, Italy
    59 rdf:type schema:Organization
    60 N7c243bdbe5ca4dffb377750dc3d44560 rdf:first sg:person.010532704656.30
    61 rdf:rest Ncc05ff2b6d0b428a9eebad1abcb137bf
    62 N89cdc2c4cba84c9ebdd88a3eb5354776 schema:name dimensions_id
    63 schema:value pub.1016793892
    64 rdf:type schema:PropertyValue
    65 N95692785110f406e89f375d1e3eb1db6 schema:name doi
    66 schema:value 10.1007/s10955-012-0568-9
    67 rdf:type schema:PropertyValue
    68 Na7d91236db004502983ddb573032af93 rdf:first sg:person.010451767147.39
    69 rdf:rest rdf:nil
    70 Na7f44b847bd9479bb5ae4f687d3f5126 schema:volumeNumber 148
    71 rdf:type schema:PublicationVolume
    72 Nb3d327f98cc64639a85d395d3bac4b34 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Ncc05ff2b6d0b428a9eebad1abcb137bf rdf:first sg:person.012536754367.53
    75 rdf:rest Na7d91236db004502983ddb573032af93
    76 Nd4dda8c7594b45458050fdd6e9baef64 schema:issueNumber 6
    77 rdf:type schema:PublicationIssue
    78 Nda41c76927db48479b0e38e51c41e0a2 schema:name Depart. of Mathematics “F. Enriques”, via Saldini, 50, Milan, Italy
    79 rdf:type schema:Organization
    80 Neac28f325f6242d9b88332d84c17974c schema:name Depart. of Mathematics “F. Enriques”, via Saldini, 50, Milan, Italy
    81 rdf:type schema:Organization
    82 Nf5039508039247c0ba3ce1a8a0ef48d3 schema:name readcube_id
    83 schema:value 500430c9ae613340c86d93b832344f605d4b5d903ddfcf0aca32bcb889d3233a
    84 rdf:type schema:PropertyValue
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Pure Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1040979 schema:issn 0022-4715
    92 1572-9613
    93 schema:name Journal of Statistical Physics
    94 rdf:type schema:Periodical
    95 sg:person.010451767147.39 schema:affiliation Neac28f325f6242d9b88332d84c17974c
    96 schema:familyName Penati
    97 schema:givenName Tiziano
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010451767147.39
    99 rdf:type schema:Person
    100 sg:person.010532704656.30 schema:affiliation Nda41c76927db48479b0e38e51c41e0a2
    101 schema:familyName Giorgilli
    102 schema:givenName Antonio
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
    104 rdf:type schema:Person
    105 sg:person.012536754367.53 schema:affiliation N68c3c6c6a2774dce8db9616b18a3263b
    106 schema:familyName Paleari
    107 schema:givenName Simone
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536754367.53
    109 rdf:type schema:Person
    110 sg:pub.10.1007/978-3-540-72995-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045412477
    111 https://doi.org/10.1007/978-3-540-72995-2_2
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-3-540-72995-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021282964
    114 https://doi.org/10.1007/978-3-540-72995-2_4
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf01019687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012658600
    117 https://doi.org/10.1007/bf01019687
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bf01058438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003681860
    120 https://doi.org/10.1007/bf01058438
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bf01218157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051921197
    123 https://doi.org/10.1007/bf01218157
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf01218262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020365094
    126 https://doi.org/10.1007/bf01218262
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf02188678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007649376
    129 https://doi.org/10.1007/bf02188678
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bfb0112756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006102707
    132 https://doi.org/10.1007/bfb0112756
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s00220-010-1039-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022339099
    135 https://doi.org/10.1007/s00220-010-1039-2
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00220-012-1522-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040875907
    138 https://doi.org/10.1007/s00220-012-1522-z
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s10955-007-9332-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453702
    141 https://doi.org/10.1007/s10955-007-9332-y
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s10955-008-9660-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025341457
    144 https://doi.org/10.1007/s10955-008-9660-6
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s10955-011-0277-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041003802
    147 https://doi.org/10.1007/s10955-011-0277-9
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/0167-2789(92)90074-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1048657814
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.physleta.2003.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040830291
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.physleta.2012.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033354892
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1017/s0305004100003224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053952207
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1017/s0305004100014249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053952843
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1017/s037016460002352x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040262708
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1051/jphys:01982004305070700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990681
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1063/1.1854278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057828319
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1063/1.2838458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057878074
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1070/rm1971v026n02abeh003827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193998
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1090/coll/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741864
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physreva.2.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467895
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physreva.22.1709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060468782
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physreva.28.3544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060471567
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1103/physreva.31.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473027
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1103/physreve.76.022104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006323355
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1137/1113026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062866131
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.3934/dcds.2004.11.855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071733120
    184 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...