Extensive Adiabatic Invariants for Nonlinear Chains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09

AUTHORS

Antonio Giorgilli, Simone Paleari, Tiziano Penati

ABSTRACT

We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates. More... »

PAGES

1106-1134

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9

DOI

http://dx.doi.org/10.1007/s10955-012-0568-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016793892


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Depart. of Mathematics \u201cF. Enriques\u201d, via Saldini, 50, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgilli", 
        "givenName": "Antonio", 
        "id": "sg:person.010532704656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Depart. of Mathematics \u201cF. Enriques\u201d, via Saldini, 50, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paleari", 
        "givenName": "Simone", 
        "id": "sg:person.012536754367.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536754367.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Depart. of Mathematics \u201cF. Enriques\u201d, via Saldini, 50, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penati", 
        "givenName": "Tiziano", 
        "id": "sg:person.010451767147.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010451767147.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01058438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003681860", 
          "https://doi.org/10.1007/bf01058438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0112756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006102707", 
          "https://doi.org/10.1007/bfb0112756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0112756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006102707", 
          "https://doi.org/10.1007/bfb0112756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02188678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007649376", 
          "https://doi.org/10.1007/bf02188678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02188678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007649376", 
          "https://doi.org/10.1007/bf02188678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-007-9332-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453702", 
          "https://doi.org/10.1007/s10955-007-9332-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01019687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012658600", 
          "https://doi.org/10.1007/bf01019687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020365094", 
          "https://doi.org/10.1007/bf01218262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020365094", 
          "https://doi.org/10.1007/bf01218262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72995-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021282964", 
          "https://doi.org/10.1007/978-3-540-72995-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72995-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021282964", 
          "https://doi.org/10.1007/978-3-540-72995-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022339099", 
          "https://doi.org/10.1007/s00220-010-1039-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022339099", 
          "https://doi.org/10.1007/s00220-010-1039-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-008-9660-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025341457", 
          "https://doi.org/10.1007/s10955-008-9660-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2012.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033354892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s037016460002352x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040262708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2003.11.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040830291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-012-1522-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040875907", 
          "https://doi.org/10.1007/s00220-012-1522-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-011-0277-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041003802", 
          "https://doi.org/10.1007/s10955-011-0277-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72995-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045412477", 
          "https://doi.org/10.1007/978-3-540-72995-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72995-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045412477", 
          "https://doi.org/10.1007/978-3-540-72995-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90074-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048657814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90074-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048657814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051921197", 
          "https://doi.org/10.1007/bf01218157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051921197", 
          "https://doi.org/10.1007/bf01218157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100003224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053952207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100014249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053952843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:01982004305070700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056990681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1854278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057828319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2838458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057878074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1971v026n02abeh003827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058193998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.2.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.2.2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.22.1709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.22.1709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060468782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.28.3544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.28.3544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.31.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.31.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1113026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062866131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcds.2004.11.855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071733120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/coll/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098741864"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schr\u00f6dinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-012-0568-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "148"
      }
    ], 
    "name": "Extensive Adiabatic Invariants for Nonlinear Chains", 
    "pagination": "1106-1134", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "500430c9ae613340c86d93b832344f605d4b5d903ddfcf0aca32bcb889d3233a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-012-0568-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016793892"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-012-0568-9", 
      "https://app.dimensions.ai/details/publication/pub.1016793892"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-012-0568-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-012-0568-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N27d9cc6f333c4e60babe755954dd2d50
4 schema:citation sg:pub.10.1007/978-3-540-72995-2_2
5 sg:pub.10.1007/978-3-540-72995-2_4
6 sg:pub.10.1007/bf01019687
7 sg:pub.10.1007/bf01058438
8 sg:pub.10.1007/bf01218157
9 sg:pub.10.1007/bf01218262
10 sg:pub.10.1007/bf02188678
11 sg:pub.10.1007/bfb0112756
12 sg:pub.10.1007/s00220-010-1039-2
13 sg:pub.10.1007/s00220-012-1522-z
14 sg:pub.10.1007/s10955-007-9332-y
15 sg:pub.10.1007/s10955-008-9660-6
16 sg:pub.10.1007/s10955-011-0277-9
17 https://doi.org/10.1016/0167-2789(92)90074-w
18 https://doi.org/10.1016/j.physleta.2003.11.052
19 https://doi.org/10.1016/j.physleta.2012.05.006
20 https://doi.org/10.1017/s0305004100003224
21 https://doi.org/10.1017/s0305004100014249
22 https://doi.org/10.1017/s037016460002352x
23 https://doi.org/10.1051/jphys:01982004305070700
24 https://doi.org/10.1063/1.1854278
25 https://doi.org/10.1063/1.2838458
26 https://doi.org/10.1070/rm1971v026n02abeh003827
27 https://doi.org/10.1090/coll/009
28 https://doi.org/10.1103/physreva.2.2013
29 https://doi.org/10.1103/physreva.22.1709
30 https://doi.org/10.1103/physreva.28.3544
31 https://doi.org/10.1103/physreva.31.1039
32 https://doi.org/10.1103/physreve.76.022104
33 https://doi.org/10.1137/1113026
34 https://doi.org/10.3934/dcds.2004.11.855
35 schema:datePublished 2012-09
36 schema:datePublishedReg 2012-09-01
37 schema:description We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N2cc4913574424afc81cc3e94f8def292
42 Nb91c274ee63a449fabee0f5f21c145b9
43 sg:journal.1040979
44 schema:name Extensive Adiabatic Invariants for Nonlinear Chains
45 schema:pagination 1106-1134
46 schema:productId Na106e900d348430caff97a54840472f7
47 Na8bd620fd7bb4ddead810cef8609e5f8
48 Nc13a978351704dfba7511473fca4d12c
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016793892
50 https://doi.org/10.1007/s10955-012-0568-9
51 schema:sdDatePublished 2019-04-10T19:08
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Na161e5aefc474fc0997c3d029c60c437
54 schema:url http://link.springer.com/10.1007%2Fs10955-012-0568-9
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N27d9cc6f333c4e60babe755954dd2d50 rdf:first sg:person.010532704656.30
59 rdf:rest Na40d6d2ac75a45ec9b020bceef95281d
60 N2cc4913574424afc81cc3e94f8def292 schema:volumeNumber 148
61 rdf:type schema:PublicationVolume
62 N749f56eb37d24c72b4e09512432a85dd schema:name Depart. of Mathematics “F. Enriques”, via Saldini, 50, Milan, Italy
63 rdf:type schema:Organization
64 N9160cfa296354157a1e18e7007862a4d schema:name Depart. of Mathematics “F. Enriques”, via Saldini, 50, Milan, Italy
65 rdf:type schema:Organization
66 Na106e900d348430caff97a54840472f7 schema:name readcube_id
67 schema:value 500430c9ae613340c86d93b832344f605d4b5d903ddfcf0aca32bcb889d3233a
68 rdf:type schema:PropertyValue
69 Na161e5aefc474fc0997c3d029c60c437 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Na40d6d2ac75a45ec9b020bceef95281d rdf:first sg:person.012536754367.53
72 rdf:rest Na6f162a4669b40fa904ca0f044c0d4ed
73 Na6f162a4669b40fa904ca0f044c0d4ed rdf:first sg:person.010451767147.39
74 rdf:rest rdf:nil
75 Na8bd620fd7bb4ddead810cef8609e5f8 schema:name dimensions_id
76 schema:value pub.1016793892
77 rdf:type schema:PropertyValue
78 Nb91c274ee63a449fabee0f5f21c145b9 schema:issueNumber 6
79 rdf:type schema:PublicationIssue
80 Nc13a978351704dfba7511473fca4d12c schema:name doi
81 schema:value 10.1007/s10955-012-0568-9
82 rdf:type schema:PropertyValue
83 Ne21edd9273964ae6a46107de90e2b6fe schema:name Depart. of Mathematics “F. Enriques”, via Saldini, 50, Milan, Italy
84 rdf:type schema:Organization
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
89 schema:name Pure Mathematics
90 rdf:type schema:DefinedTerm
91 sg:journal.1040979 schema:issn 0022-4715
92 1572-9613
93 schema:name Journal of Statistical Physics
94 rdf:type schema:Periodical
95 sg:person.010451767147.39 schema:affiliation N9160cfa296354157a1e18e7007862a4d
96 schema:familyName Penati
97 schema:givenName Tiziano
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010451767147.39
99 rdf:type schema:Person
100 sg:person.010532704656.30 schema:affiliation Ne21edd9273964ae6a46107de90e2b6fe
101 schema:familyName Giorgilli
102 schema:givenName Antonio
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
104 rdf:type schema:Person
105 sg:person.012536754367.53 schema:affiliation N749f56eb37d24c72b4e09512432a85dd
106 schema:familyName Paleari
107 schema:givenName Simone
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536754367.53
109 rdf:type schema:Person
110 sg:pub.10.1007/978-3-540-72995-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045412477
111 https://doi.org/10.1007/978-3-540-72995-2_2
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-540-72995-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021282964
114 https://doi.org/10.1007/978-3-540-72995-2_4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01019687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012658600
117 https://doi.org/10.1007/bf01019687
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01058438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003681860
120 https://doi.org/10.1007/bf01058438
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf01218157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051921197
123 https://doi.org/10.1007/bf01218157
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf01218262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020365094
126 https://doi.org/10.1007/bf01218262
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf02188678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007649376
129 https://doi.org/10.1007/bf02188678
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bfb0112756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006102707
132 https://doi.org/10.1007/bfb0112756
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00220-010-1039-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022339099
135 https://doi.org/10.1007/s00220-010-1039-2
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00220-012-1522-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040875907
138 https://doi.org/10.1007/s00220-012-1522-z
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10955-007-9332-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453702
141 https://doi.org/10.1007/s10955-007-9332-y
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10955-008-9660-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025341457
144 https://doi.org/10.1007/s10955-008-9660-6
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s10955-011-0277-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041003802
147 https://doi.org/10.1007/s10955-011-0277-9
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0167-2789(92)90074-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1048657814
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.physleta.2003.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040830291
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.physleta.2012.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033354892
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1017/s0305004100003224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053952207
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1017/s0305004100014249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053952843
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1017/s037016460002352x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040262708
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1051/jphys:01982004305070700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990681
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.1854278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057828319
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1063/1.2838458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057878074
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1070/rm1971v026n02abeh003827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193998
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1090/coll/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741864
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreva.2.2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467895
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreva.22.1709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060468782
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreva.28.3544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060471567
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreva.31.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473027
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreve.76.022104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006323355
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1137/1113026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062866131
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3934/dcds.2004.11.855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071733120
184 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...