Ontology type: schema:ScholarlyArticle
2012-09
AUTHORSAntonio Giorgilli, Simone Paleari, Tiziano Penati
ABSTRACTWe look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schrödinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates. More... »
PAGES1106-1134
http://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9
DOIhttp://dx.doi.org/10.1007/s10955-012-0568-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1016793892
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Depart. of Mathematics \u201cF. Enriques\u201d, via Saldini, 50, Milan, Italy"
],
"type": "Organization"
},
"familyName": "Giorgilli",
"givenName": "Antonio",
"id": "sg:person.010532704656.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Depart. of Mathematics \u201cF. Enriques\u201d, via Saldini, 50, Milan, Italy"
],
"type": "Organization"
},
"familyName": "Paleari",
"givenName": "Simone",
"id": "sg:person.012536754367.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012536754367.53"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Depart. of Mathematics \u201cF. Enriques\u201d, via Saldini, 50, Milan, Italy"
],
"type": "Organization"
},
"familyName": "Penati",
"givenName": "Tiziano",
"id": "sg:person.010451767147.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010451767147.39"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01058438",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003681860",
"https://doi.org/10.1007/bf01058438"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0112756",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006102707",
"https://doi.org/10.1007/bfb0112756"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0112756",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006102707",
"https://doi.org/10.1007/bfb0112756"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.76.022104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006323355"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.76.022104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006323355"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02188678",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007649376",
"https://doi.org/10.1007/bf02188678"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02188678",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007649376",
"https://doi.org/10.1007/bf02188678"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10955-007-9332-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012453702",
"https://doi.org/10.1007/s10955-007-9332-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01019687",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012658600",
"https://doi.org/10.1007/bf01019687"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01218262",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020365094",
"https://doi.org/10.1007/bf01218262"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01218262",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020365094",
"https://doi.org/10.1007/bf01218262"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-72995-2_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021282964",
"https://doi.org/10.1007/978-3-540-72995-2_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-72995-2_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021282964",
"https://doi.org/10.1007/978-3-540-72995-2_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-010-1039-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022339099",
"https://doi.org/10.1007/s00220-010-1039-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-010-1039-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022339099",
"https://doi.org/10.1007/s00220-010-1039-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10955-008-9660-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025341457",
"https://doi.org/10.1007/s10955-008-9660-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physleta.2012.05.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033354892"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s037016460002352x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040262708"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physleta.2003.11.052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040830291"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-012-1522-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040875907",
"https://doi.org/10.1007/s00220-012-1522-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10955-011-0277-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041003802",
"https://doi.org/10.1007/s10955-011-0277-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-72995-2_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045412477",
"https://doi.org/10.1007/978-3-540-72995-2_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-72995-2_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045412477",
"https://doi.org/10.1007/978-3-540-72995-2_2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-2789(92)90074-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048657814"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-2789(92)90074-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048657814"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01218157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051921197",
"https://doi.org/10.1007/bf01218157"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01218157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051921197",
"https://doi.org/10.1007/bf01218157"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0305004100003224",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053952207"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0305004100014249",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053952843"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/jphys:01982004305070700",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056990681"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1854278",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057828319"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.2838458",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057878074"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1070/rm1971v026n02abeh003827",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058193998"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.2.2013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060467895"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.2.2013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060467895"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.22.1709",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060468782"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.22.1709",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060468782"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.28.3544",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060471567"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.28.3544",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060471567"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.31.1039",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060473027"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.31.1039",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060473027"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1113026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062866131"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/dcds.2004.11.855",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071733120"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/coll/009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098741864"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-09",
"datePublishedReg": "2012-09-01",
"description": "We look for extensive adiabatic invariants in nonlinear chains in the thermodynamic limit. Considering the quadratic part of the Klein-Gordon Hamiltonian, by a linear change of variables we transform it into a sum of two parts in involution. At variance with the usual method of introducing normal modes, our constructive procedure allows us to exploit the complete resonance, while keeping the extensive nature of the system. Next we construct a nonlinear approximation of an extensive adiabatic invariant for a perturbation of the discrete nonlinear Schr\u00f6dinger model. The fluctuations of this quantity are controlled via Gibbs measure estimates independent of the system size, for a large set of initial data at low specific energy. Finally, by numerical calculations we show that our adiabatic invariant is well conserved for times much longer than predicted by our first order theory, with fluctuation much smaller than expected according to standard statistical estimates.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10955-012-0568-9",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1040979",
"issn": [
"0022-4715",
"1572-9613"
],
"name": "Journal of Statistical Physics",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "148"
}
],
"name": "Extensive Adiabatic Invariants for Nonlinear Chains",
"pagination": "1106-1134",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"500430c9ae613340c86d93b832344f605d4b5d903ddfcf0aca32bcb889d3233a"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10955-012-0568-9"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1016793892"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10955-012-0568-9",
"https://app.dimensions.ai/details/publication/pub.1016793892"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T19:08",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000511.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10955-012-0568-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-012-0568-9'
This table displays all metadata directly associated to this object as RDF triples.
184 TRIPLES
21 PREDICATES
58 URIs
19 LITERALS
7 BLANK NODES