A New Derivation of the Quantum Navier–Stokes Equations in the Wigner–Fokker–Planck Approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

Ansgar Jüngel, José Luis López, Jesús Montejo–Gámez

ABSTRACT

A quantum Navier–Stokes system for the particle, momentum, and energy densities is formally derived from the Wigner–Fokker–Planck equation using a moment method. The viscosity term depends on the particle density with a shear viscosity coefficient which equals the quantum diffusion coefficient of the Fokker–Planck collision operator. The main idea of the derivation is the use of a so-called osmotic momentum operator, which is the sum of the phase-space momentum and the gradient operator. In this way, a Chapman–Enskog expansion of the Wigner function, which typically leads to viscous approximations, is avoided. Moreover, we show that the osmotic momentum emerges from local gauge theory. More... »

PAGES

1661-1673

References to SciGraph publications

Journal

TITLE

Journal of Statistical Physics

ISSUE

6

VOLUME

145

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10955-011-0388-3

    DOI

    http://dx.doi.org/10.1007/s10955-011-0388-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037369677


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "TU Wien", 
              "id": "https://www.grid.ac/institutes/grid.5329.d", 
              "name": [
                "Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstra\u00dfe 8\u201310, 1040, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "J\u00fcngel", 
            "givenName": "Ansgar", 
            "id": "sg:person.015252241234.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252241234.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Granada", 
              "id": "https://www.grid.ac/institutes/grid.4489.1", 
              "name": [
                "Departamento de Matem\u00e1tica Aplicada, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00f3pez", 
            "givenName": "Jos\u00e9 Luis", 
            "id": "sg:person.013330643443.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013330643443.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Granada", 
              "id": "https://www.grid.ac/institutes/grid.4489.1", 
              "name": [
                "Departamento de Matem\u00e1tica Aplicada, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Montejo\u2013G\u00e1mez", 
            "givenName": "Jes\u00fas", 
            "id": "sg:person.014662506045.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662506045.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/0305-4470/39/14/l03", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000657618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/39/14/l03", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000657618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-010-0003-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004259962", 
              "https://doi.org/10.1007/s10955-010-0003-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-010-0003-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004259962", 
              "https://doi.org/10.1007/s10955-010-0003-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018667323830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004737065", 
              "https://doi.org/10.1023/a:1018667323830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0030-4018(99)00670-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017839764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1023824008525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019740285", 
              "https://doi.org/10.1023/a:1023824008525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.anihpc.2006.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024662908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physd.2008.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030897767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(83)90013-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032226063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(83)90013-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032226063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.170601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033884353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.170601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033884353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.075316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037587867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.075316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037587867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-79574-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042338463", 
              "https://doi.org/10.1007/978-3-540-79574-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/zamm.200900297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048866679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/zamm.200900297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048866679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-89526-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051566423", 
              "https://doi.org/10.1007/978-3-540-89526-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-89526-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051566423", 
              "https://doi.org/10.1007/978-3-540-89526-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956792504005686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053750573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1678812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057754897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.150.1079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060433709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.150.1079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060433709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.94.511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060462281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.94.511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060462281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.7944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060569098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.7944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060569098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.011404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060730972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.011404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060730972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.026110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060731136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.026110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060731136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/090776068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062856862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036139992240425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062875061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3934/krm.2011.4.785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071740881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/rmi/407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072320710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9783527623358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661996"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "A quantum Navier\u2013Stokes system for the particle, momentum, and energy densities is formally derived from the Wigner\u2013Fokker\u2013Planck equation using a moment method. The viscosity term depends on the particle density with a shear viscosity coefficient which equals the quantum diffusion coefficient of the Fokker\u2013Planck collision operator. The main idea of the derivation is the use of a so-called osmotic momentum operator, which is the sum of the phase-space momentum and the gradient operator. In this way, a Chapman\u2013Enskog expansion of the Wigner function, which typically leads to viscous approximations, is avoided. Moreover, we show that the osmotic momentum emerges from local gauge theory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10955-011-0388-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6191930", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "145"
          }
        ], 
        "name": "A New Derivation of the Quantum Navier\u2013Stokes Equations in the Wigner\u2013Fokker\u2013Planck Approach", 
        "pagination": "1661-1673", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b2039e7df0d825e2a9ea07f48b77e47f76264876b8893b3b47b1109148e85d0c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10955-011-0388-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037369677"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10955-011-0388-3", 
          "https://app.dimensions.ai/details/publication/pub.1037369677"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10955-011-0388-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-011-0388-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-011-0388-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-011-0388-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-011-0388-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    160 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10955-011-0388-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N959d7091c152490ba9dd7df5234e18bb
    4 schema:citation sg:pub.10.1007/978-3-540-79574-2_2
    5 sg:pub.10.1007/978-3-540-89526-8
    6 sg:pub.10.1007/s10955-010-0003-z
    7 sg:pub.10.1023/a:1018667323830
    8 sg:pub.10.1023/a:1023824008525
    9 https://doi.org/10.1002/9783527623358
    10 https://doi.org/10.1002/zamm.200900297
    11 https://doi.org/10.1016/0378-4371(83)90013-4
    12 https://doi.org/10.1016/j.anihpc.2006.07.001
    13 https://doi.org/10.1016/j.physd.2008.12.006
    14 https://doi.org/10.1016/s0030-4018(99)00670-7
    15 https://doi.org/10.1017/s0956792504005686
    16 https://doi.org/10.1063/1.1678812
    17 https://doi.org/10.1088/0305-4470/39/14/l03
    18 https://doi.org/10.1103/physrev.150.1079
    19 https://doi.org/10.1103/physrev.94.511
    20 https://doi.org/10.1103/physrevb.48.7944
    21 https://doi.org/10.1103/physrevb.64.075316
    22 https://doi.org/10.1103/physreve.69.011404
    23 https://doi.org/10.1103/physreve.69.026110
    24 https://doi.org/10.1103/physrevlett.98.170601
    25 https://doi.org/10.1137/090776068
    26 https://doi.org/10.1137/s0036139992240425
    27 https://doi.org/10.3934/krm.2011.4.785
    28 https://doi.org/10.4171/rmi/407
    29 schema:datePublished 2011-12
    30 schema:datePublishedReg 2011-12-01
    31 schema:description A quantum Navier–Stokes system for the particle, momentum, and energy densities is formally derived from the Wigner–Fokker–Planck equation using a moment method. The viscosity term depends on the particle density with a shear viscosity coefficient which equals the quantum diffusion coefficient of the Fokker–Planck collision operator. The main idea of the derivation is the use of a so-called osmotic momentum operator, which is the sum of the phase-space momentum and the gradient operator. In this way, a Chapman–Enskog expansion of the Wigner function, which typically leads to viscous approximations, is avoided. Moreover, we show that the osmotic momentum emerges from local gauge theory.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N2b4a7a899a774cdeb92b426a0edd97d4
    36 Ne655081ecbf64fd9bd00c5f5b66d4bd7
    37 sg:journal.1040979
    38 schema:name A New Derivation of the Quantum Navier–Stokes Equations in the Wigner–Fokker–Planck Approach
    39 schema:pagination 1661-1673
    40 schema:productId N018204dd9a7144b78f7c0e4c3156e2c1
    41 N09ddc9ac3db7441683335b92dac2e1f2
    42 N42bedc069ac14664b99dbe98c45ba447
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037369677
    44 https://doi.org/10.1007/s10955-011-0388-3
    45 schema:sdDatePublished 2019-04-10T15:01
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nb522292b3e674580b6c833440531fefd
    48 schema:url http://link.springer.com/10.1007%2Fs10955-011-0388-3
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N018204dd9a7144b78f7c0e4c3156e2c1 schema:name readcube_id
    53 schema:value b2039e7df0d825e2a9ea07f48b77e47f76264876b8893b3b47b1109148e85d0c
    54 rdf:type schema:PropertyValue
    55 N09ddc9ac3db7441683335b92dac2e1f2 schema:name dimensions_id
    56 schema:value pub.1037369677
    57 rdf:type schema:PropertyValue
    58 N2b4a7a899a774cdeb92b426a0edd97d4 schema:volumeNumber 145
    59 rdf:type schema:PublicationVolume
    60 N35a1c76daf144a1d813e3765827e18ff rdf:first sg:person.014662506045.47
    61 rdf:rest rdf:nil
    62 N42bedc069ac14664b99dbe98c45ba447 schema:name doi
    63 schema:value 10.1007/s10955-011-0388-3
    64 rdf:type schema:PropertyValue
    65 N890be475b07f4e2c96c221a0492c9202 rdf:first sg:person.013330643443.66
    66 rdf:rest N35a1c76daf144a1d813e3765827e18ff
    67 N959d7091c152490ba9dd7df5234e18bb rdf:first sg:person.015252241234.46
    68 rdf:rest N890be475b07f4e2c96c221a0492c9202
    69 Nb522292b3e674580b6c833440531fefd schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Ne655081ecbf64fd9bd00c5f5b66d4bd7 schema:issueNumber 6
    72 rdf:type schema:PublicationIssue
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:grant.6191930 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-011-0388-3
    80 rdf:type schema:MonetaryGrant
    81 sg:journal.1040979 schema:issn 0022-4715
    82 1572-9613
    83 schema:name Journal of Statistical Physics
    84 rdf:type schema:Periodical
    85 sg:person.013330643443.66 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
    86 schema:familyName López
    87 schema:givenName José Luis
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013330643443.66
    89 rdf:type schema:Person
    90 sg:person.014662506045.47 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
    91 schema:familyName Montejo–Gámez
    92 schema:givenName Jesús
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662506045.47
    94 rdf:type schema:Person
    95 sg:person.015252241234.46 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
    96 schema:familyName Jüngel
    97 schema:givenName Ansgar
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252241234.46
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-540-79574-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042338463
    101 https://doi.org/10.1007/978-3-540-79574-2_2
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-3-540-89526-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051566423
    104 https://doi.org/10.1007/978-3-540-89526-8
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s10955-010-0003-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004259962
    107 https://doi.org/10.1007/s10955-010-0003-z
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1023/a:1018667323830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004737065
    110 https://doi.org/10.1023/a:1018667323830
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1023/a:1023824008525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019740285
    113 https://doi.org/10.1023/a:1023824008525
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1002/9783527623358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661996
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1002/zamm.200900297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048866679
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/0378-4371(83)90013-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032226063
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.anihpc.2006.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024662908
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.physd.2008.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030897767
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/s0030-4018(99)00670-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017839764
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1017/s0956792504005686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053750573
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1063/1.1678812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057754897
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1088/0305-4470/39/14/l03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000657618
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrev.150.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433709
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrev.94.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462281
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevb.48.7944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569098
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevb.64.075316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037587867
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physreve.69.011404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730972
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physreve.69.026110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060731136
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevlett.98.170601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033884353
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1137/090776068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856862
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1137/s0036139992240425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875061
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.3934/krm.2011.4.785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740881
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.4171/rmi/407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320710
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.4489.1 schema:alternateName University of Granada
    156 schema:name Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
    157 rdf:type schema:Organization
    158 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
    159 schema:name Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8–10, 1040, Wien, Austria
    160 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...