How Gibbs Distributions May Naturally Arise from Synaptic Adaptation Mechanisms. A Model-Based Argumentation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-08

AUTHORS

B. Cessac, H. Rostro, J. C. Vasquez, T. Viéville

ABSTRACT

This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials (“spike trains”) produced by neuronal networks? and; (ii) what are the effects of synaptic plasticity on these statistics? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering “slow” synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics. More... »

PAGES

565-602

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-009-9786-1

DOI

http://dx.doi.org/10.1007/s10955-009-9786-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021459461


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Laboratoire J.A. Dieudonn\u00e9, U.M.R. C.N.R.S. N\u00b0 6621, Universit\u00e9 de Nice Sophia-Antipolis, Sophia-Antipolis, France", 
            "INRIA, 2004 Route des Lucioles, 06902, Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cessac", 
        "givenName": "B.", 
        "id": "sg:person.01074735442.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074735442.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "INRIA, 2004 Route des Lucioles, 06902, Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rostro", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "INRIA, 2004 Route des Lucioles, 06902, Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasquez", 
        "givenName": "J. C.", 
        "id": "sg:person.010537062743.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537062743.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French Institute for Research in Computer Science and Automation", 
          "id": "https://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "INRIA, 2004 Route des Lucioles, 06902, Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vi\u00e9ville", 
        "givenName": "T.", 
        "id": "sg:person.011526357255.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526357255.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02477753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000290782", 
          "https://doi.org/10.1007/bf02477753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02477753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000290782", 
          "https://doi.org/10.1007/bf02477753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-002-0385-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000915581", 
          "https://doi.org/10.1007/s00422-002-0385-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4522(83)90010-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001073764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0306-4522(83)90010-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001073764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00961885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001896844", 
          "https://doi.org/10.1007/bf00961885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1973.sp010274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002242088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:joss.0000028057.16662.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003191836", 
          "https://doi.org/10.1023/b:joss.0000028057.16662.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2007-00059-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006383120", 
          "https://doi.org/10.1140/epjst/e2007-00059-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2008.05-07-530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007024810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0081279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007966850", 
          "https://doi.org/10.1007/bfb0081279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0081279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007966850", 
          "https://doi.org/10.1007/bfb0081279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0081279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007966850", 
          "https://doi.org/10.1007/bfb0081279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5297.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010157370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-007-0117-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011148568", 
          "https://doi.org/10.1007/s00285-007-0117-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-007-0117-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011148568", 
          "https://doi.org/10.1007/s00285-007-0117-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5435.1870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012005596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2202-10-s1-p289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012068985", 
          "https://doi.org/10.1186/1471-2202-10-s1-p289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1131895100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015495504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2006.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016775011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2007.19.3.639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017088565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-002-0353-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018271916", 
          "https://doi.org/10.1007/s00422-002-0353-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(97)00131-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018399180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976604322742038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019133568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976603321891774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019868150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023220802597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020092412", 
          "https://doi.org/10.1023/a:1023220802597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.9.2146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020370449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020503948", 
          "https://doi.org/10.1007/bf00288907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2007.19.12.3262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022078340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018639308981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022558143", 
          "https://doi.org/10.1023/a:1018639308981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024509959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004593915069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025335802", 
          "https://doi.org/10.1023/a:1004593915069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1926.sp002281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025722992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(01)00403-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026712964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/347069a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027646528", 
          "https://doi.org/10.1038/347069a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027649358", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77695-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027649358", 
          "https://doi.org/10.1007/978-3-540-77695-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77695-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027649358", 
          "https://doi.org/10.1007/978-3-540-77695-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976601750541787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030629199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0611597104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031453053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.neuro.24.1.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034103946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2007.19.2.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034140773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jcns.0000004842.04535.7c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034201490", 
          "https://doi.org/10.1023/b:jcns.0000004842.04535.7c"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1491-06.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034471975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976603321891783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034835804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00686.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035590959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00686.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035590959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphysparis.2007.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036844185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1952.sp004764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038260469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2202-10-s1-p165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038837490", 
          "https://doi.org/10.1186/1471-2202-10-s1-p165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(61)86902-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039086367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002210050826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039494110", 
          "https://doi.org/10.1007/s002210050826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/entropy-e10020071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040896087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00354757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044735921", 
          "https://doi.org/10.1007/bf00354757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046058276", 
          "https://doi.org/10.1007/bf02460693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046058276", 
          "https://doi.org/10.1007/bf02460693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/20/12/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046608911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2007-00058-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048315334", 
          "https://doi.org/10.1140/epjst/e2007-00058-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2007.07-07-561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049612381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0500495102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049615638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90018-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050194804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90018-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050194804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976606774841567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052263369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(01)00460-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053400288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jrproc.1962.288235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061315446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2003.820440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2004.832719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2762813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070687268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoap/1034625344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064397692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.02-01-00032.1982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082126265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.02-11-01527.1982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082174034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1980.43.6.1793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082338749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.13-07-02910.1993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082760575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511623257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511815706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511983955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107359987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/5462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098843796"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-08", 
    "datePublishedReg": "2009-08-01", 
    "description": "This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials (\u201cspike trains\u201d) produced by neuronal networks? and; (ii) what are the effects of synaptic plasticity on these statistics? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering \u201cslow\u201d synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-009-9786-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "136"
      }
    ], 
    "name": "How Gibbs Distributions May Naturally Arise from Synaptic Adaptation Mechanisms. A Model-Based Argumentation", 
    "pagination": "565-602", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "663e526d6b2d573245a20bada5614fd23d54dec24f1f7140977d3300d611f11f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-009-9786-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021459461"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-009-9786-1", 
      "https://app.dimensions.ai/details/publication/pub.1021459461"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64112_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-009-9786-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-009-9786-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-009-9786-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-009-9786-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-009-9786-1'


 

This table displays all metadata directly associated to this object as RDF triples.

319 TRIPLES      21 PREDICATES      99 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-009-9786-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd8ea9ede09cb47abafa9eae457d98ee8
4 schema:citation sg:pub.10.1007/978-3-540-77695-6
5 sg:pub.10.1007/bf00288907
6 sg:pub.10.1007/bf00354757
7 sg:pub.10.1007/bf00961885
8 sg:pub.10.1007/bf02460693
9 sg:pub.10.1007/bf02477753
10 sg:pub.10.1007/bfb0081279
11 sg:pub.10.1007/s002210050826
12 sg:pub.10.1007/s00285-007-0117-3
13 sg:pub.10.1007/s00422-002-0353-y
14 sg:pub.10.1007/s00422-002-0385-3
15 sg:pub.10.1023/a:1004593915069
16 sg:pub.10.1023/a:1018639308981
17 sg:pub.10.1023/a:1023220802597
18 sg:pub.10.1023/b:jcns.0000004842.04535.7c
19 sg:pub.10.1023/b:joss.0000028057.16662.89
20 sg:pub.10.1038/347069a0
21 sg:pub.10.1038/nature04701
22 sg:pub.10.1140/epjst/e2007-00058-2
23 sg:pub.10.1140/epjst/e2007-00059-1
24 sg:pub.10.1186/1471-2202-10-s1-p165
25 sg:pub.10.1186/1471-2202-10-s1-p289
26 https://app.dimensions.ai/details/publication/pub.1027649358
27 https://doi.org/10.1016/0306-4522(83)90010-6
28 https://doi.org/10.1016/0893-6080(89)90018-x
29 https://doi.org/10.1016/j.jphysparis.2007.10.003
30 https://doi.org/10.1016/j.sigpro.2006.11.005
31 https://doi.org/10.1016/s0006-3495(61)86902-6
32 https://doi.org/10.1016/s0893-6080(97)00131-7
33 https://doi.org/10.1016/s0925-2312(01)00403-9
34 https://doi.org/10.1016/s0925-2312(01)00460-x
35 https://doi.org/10.1017/cbo9780511623257
36 https://doi.org/10.1017/cbo9780511815706
37 https://doi.org/10.1017/cbo9780511983955
38 https://doi.org/10.1017/cbo9781107359987
39 https://doi.org/10.1073/pnas.0500495102
40 https://doi.org/10.1073/pnas.0611597104
41 https://doi.org/10.1073/pnas.1131895100
42 https://doi.org/10.1088/0951-7715/20/12/007
43 https://doi.org/10.1103/physrev.106.620
44 https://doi.org/10.1109/jrproc.1962.288235
45 https://doi.org/10.1109/tnn.2003.820440
46 https://doi.org/10.1109/tnn.2004.832719
47 https://doi.org/10.1113/jphysiol.1926.sp002281
48 https://doi.org/10.1113/jphysiol.1952.sp004764
49 https://doi.org/10.1113/jphysiol.1973.sp010274
50 https://doi.org/10.1126/science.275.5297.213
51 https://doi.org/10.1126/science.2762813
52 https://doi.org/10.1126/science.285.5435.1870
53 https://doi.org/10.1137/070687268
54 https://doi.org/10.1142/5462
55 https://doi.org/10.1146/annurev.neuro.24.1.139
56 https://doi.org/10.1152/jn.00686.2005
57 https://doi.org/10.1152/jn.1980.43.6.1793
58 https://doi.org/10.1162/089976601750541787
59 https://doi.org/10.1162/089976603321891774
60 https://doi.org/10.1162/089976603321891783
61 https://doi.org/10.1162/089976604322742038
62 https://doi.org/10.1162/089976606774841567
63 https://doi.org/10.1162/neco.2006.18.9.2146
64 https://doi.org/10.1162/neco.2007.07-07-561
65 https://doi.org/10.1162/neco.2007.19.12.3262
66 https://doi.org/10.1162/neco.2007.19.2.371
67 https://doi.org/10.1162/neco.2007.19.3.639
68 https://doi.org/10.1162/neco.2008.05-07-530
69 https://doi.org/10.1214/aoap/1034625344
70 https://doi.org/10.1371/journal.pcbi.1000025
71 https://doi.org/10.1523/jneurosci.02-01-00032.1982
72 https://doi.org/10.1523/jneurosci.02-11-01527.1982
73 https://doi.org/10.1523/jneurosci.13-07-02910.1993
74 https://doi.org/10.1523/jneurosci.1491-06.2006
75 https://doi.org/10.3390/entropy-e10020071
76 schema:datePublished 2009-08
77 schema:datePublishedReg 2009-08-01
78 schema:description This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials (“spike trains”) produced by neuronal networks? and; (ii) what are the effects of synaptic plasticity on these statistics? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering “slow” synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.
79 schema:genre research_article
80 schema:inLanguage en
81 schema:isAccessibleForFree true
82 schema:isPartOf Na500bd6b3cd34e25aaef9554bfc51c0c
83 Ne15a9101b89a486890b3273efeea1289
84 sg:journal.1040979
85 schema:name How Gibbs Distributions May Naturally Arise from Synaptic Adaptation Mechanisms. A Model-Based Argumentation
86 schema:pagination 565-602
87 schema:productId Nb2d835449b684c599a04197c2e12922e
88 Nbe949c5f7f4f4cb6982d1b48012f538b
89 Nded7d665fa0a46598642aafab021898e
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021459461
91 https://doi.org/10.1007/s10955-009-9786-1
92 schema:sdDatePublished 2019-04-11T09:26
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nb764da12f47843fa945364e09390d6ac
95 schema:url http://link.springer.com/10.1007%2Fs10955-009-9786-1
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N25f01bd8715d437f8ea9f48c5d78acd3 rdf:first Nefc8f4b2a0b04dac9ffa622f349eb7aa
100 rdf:rest N7ac419c82fb34aa3b7f856f73f5af05d
101 N3e947958bbd541ba8824100c69ebdcc1 rdf:first sg:person.011526357255.47
102 rdf:rest rdf:nil
103 N7ac419c82fb34aa3b7f856f73f5af05d rdf:first sg:person.010537062743.15
104 rdf:rest N3e947958bbd541ba8824100c69ebdcc1
105 Na500bd6b3cd34e25aaef9554bfc51c0c schema:issueNumber 3
106 rdf:type schema:PublicationIssue
107 Nb2d835449b684c599a04197c2e12922e schema:name doi
108 schema:value 10.1007/s10955-009-9786-1
109 rdf:type schema:PropertyValue
110 Nb764da12f47843fa945364e09390d6ac schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nbe949c5f7f4f4cb6982d1b48012f538b schema:name dimensions_id
113 schema:value pub.1021459461
114 rdf:type schema:PropertyValue
115 Nd8ea9ede09cb47abafa9eae457d98ee8 rdf:first sg:person.01074735442.62
116 rdf:rest N25f01bd8715d437f8ea9f48c5d78acd3
117 Nded7d665fa0a46598642aafab021898e schema:name readcube_id
118 schema:value 663e526d6b2d573245a20bada5614fd23d54dec24f1f7140977d3300d611f11f
119 rdf:type schema:PropertyValue
120 Ne15a9101b89a486890b3273efeea1289 schema:volumeNumber 136
121 rdf:type schema:PublicationVolume
122 Nefc8f4b2a0b04dac9ffa622f349eb7aa schema:affiliation https://www.grid.ac/institutes/grid.5328.c
123 schema:familyName Rostro
124 schema:givenName H.
125 rdf:type schema:Person
126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
127 schema:name Mathematical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
130 schema:name Statistics
131 rdf:type schema:DefinedTerm
132 sg:journal.1040979 schema:issn 0022-4715
133 1572-9613
134 schema:name Journal of Statistical Physics
135 rdf:type schema:Periodical
136 sg:person.010537062743.15 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
137 schema:familyName Vasquez
138 schema:givenName J. C.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537062743.15
140 rdf:type schema:Person
141 sg:person.01074735442.62 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
142 schema:familyName Cessac
143 schema:givenName B.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074735442.62
145 rdf:type schema:Person
146 sg:person.011526357255.47 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
147 schema:familyName Viéville
148 schema:givenName T.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526357255.47
150 rdf:type schema:Person
151 sg:pub.10.1007/978-3-540-77695-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027649358
152 https://doi.org/10.1007/978-3-540-77695-6
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf00288907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020503948
155 https://doi.org/10.1007/bf00288907
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/bf00354757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044735921
158 https://doi.org/10.1007/bf00354757
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf00961885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001896844
161 https://doi.org/10.1007/bf00961885
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/bf02460693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046058276
164 https://doi.org/10.1007/bf02460693
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/bf02477753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000290782
167 https://doi.org/10.1007/bf02477753
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/bfb0081279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007966850
170 https://doi.org/10.1007/bfb0081279
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s002210050826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039494110
173 https://doi.org/10.1007/s002210050826
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00285-007-0117-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011148568
176 https://doi.org/10.1007/s00285-007-0117-3
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00422-002-0353-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018271916
179 https://doi.org/10.1007/s00422-002-0353-y
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s00422-002-0385-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000915581
182 https://doi.org/10.1007/s00422-002-0385-3
183 rdf:type schema:CreativeWork
184 sg:pub.10.1023/a:1004593915069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025335802
185 https://doi.org/10.1023/a:1004593915069
186 rdf:type schema:CreativeWork
187 sg:pub.10.1023/a:1018639308981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022558143
188 https://doi.org/10.1023/a:1018639308981
189 rdf:type schema:CreativeWork
190 sg:pub.10.1023/a:1023220802597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020092412
191 https://doi.org/10.1023/a:1023220802597
192 rdf:type schema:CreativeWork
193 sg:pub.10.1023/b:jcns.0000004842.04535.7c schema:sameAs https://app.dimensions.ai/details/publication/pub.1034201490
194 https://doi.org/10.1023/b:jcns.0000004842.04535.7c
195 rdf:type schema:CreativeWork
196 sg:pub.10.1023/b:joss.0000028057.16662.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003191836
197 https://doi.org/10.1023/b:joss.0000028057.16662.89
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/347069a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027646528
200 https://doi.org/10.1038/347069a0
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nature04701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013920925
203 https://doi.org/10.1038/nature04701
204 rdf:type schema:CreativeWork
205 sg:pub.10.1140/epjst/e2007-00058-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048315334
206 https://doi.org/10.1140/epjst/e2007-00058-2
207 rdf:type schema:CreativeWork
208 sg:pub.10.1140/epjst/e2007-00059-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006383120
209 https://doi.org/10.1140/epjst/e2007-00059-1
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1471-2202-10-s1-p165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038837490
212 https://doi.org/10.1186/1471-2202-10-s1-p165
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/1471-2202-10-s1-p289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012068985
215 https://doi.org/10.1186/1471-2202-10-s1-p289
216 rdf:type schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1027649358 schema:CreativeWork
218 https://doi.org/10.1016/0306-4522(83)90010-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001073764
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/0893-6080(89)90018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050194804
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.jphysparis.2007.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036844185
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.sigpro.2006.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016775011
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/s0006-3495(61)86902-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039086367
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0893-6080(97)00131-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018399180
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s0925-2312(01)00403-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026712964
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/s0925-2312(01)00460-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053400288
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1017/cbo9780511623257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664010
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1017/cbo9780511815706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668653
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1017/cbo9780511983955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679260
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1017/cbo9781107359987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679482
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1073/pnas.0500495102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049615638
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1073/pnas.0611597104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031453053
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1073/pnas.1131895100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015495504
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1088/0951-7715/20/12/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046608911
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1109/jrproc.1962.288235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061315446
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1109/tnn.2003.820440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716640
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1109/tnn.2004.832719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716742
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1113/jphysiol.1926.sp002281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025722992
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1113/jphysiol.1952.sp004764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038260469
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1113/jphysiol.1973.sp010274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002242088
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.275.5297.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010157370
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.2762813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557186
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1126/science.285.5435.1870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012005596
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1137/070687268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851079
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1142/5462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098843796
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1146/annurev.neuro.24.1.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034103946
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1152/jn.00686.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035590959
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1152/jn.1980.43.6.1793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082338749
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1162/089976601750541787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030629199
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1162/089976603321891774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019868150
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1162/089976603321891783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034835804
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1162/089976604322742038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019133568
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1162/089976606774841567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052263369
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1162/neco.2006.18.9.2146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020370449
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1162/neco.2007.07-07-561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049612381
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1162/neco.2007.19.12.3262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022078340
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1162/neco.2007.19.2.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034140773
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1162/neco.2007.19.3.639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017088565
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1162/neco.2008.05-07-530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007024810
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1214/aoap/1034625344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064397692
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1371/journal.pcbi.1000025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024509959
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1523/jneurosci.02-01-00032.1982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082126265
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1523/jneurosci.02-11-01527.1982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082174034
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1523/jneurosci.13-07-02910.1993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082760575
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1523/jneurosci.1491-06.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034471975
313 rdf:type schema:CreativeWork
314 https://doi.org/10.3390/entropy-e10020071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040896087
315 rdf:type schema:CreativeWork
316 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
317 schema:name INRIA, 2004 Route des Lucioles, 06902, Sophia-Antipolis, France
318 Laboratoire J.A. Dieudonné, U.M.R. C.N.R.S. N° 6621, Université de Nice Sophia-Antipolis, Sophia-Antipolis, France
319 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...