Large Deviations for Random Trees View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-08

AUTHORS

Yuri Bakhtin, Christine Heitsch

ABSTRACT

We consider large random trees under Gibbs distributions and prove a Large Deviation Principle (LDP) for the distribution of degrees of vertices of the tree. The LDP rate function is given explicitly. An immediate consequence is a Law of Large Numbers for the distribution of vertex degrees in a large random tree. Our motivation for this study comes from the analysis of RNA secondary structures. More... »

PAGES

551-560

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-008-9540-0

DOI

http://dx.doi.org/10.1007/s10955-008-9540-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011452471

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20216937


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Mathematics, Georgia Tech., 30332-0160, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakhtin", 
        "givenName": "Yuri", 
        "id": "sg:person.01327752120.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "School of Mathematics, Georgia Tech., 30332-0160, Atlanta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heitsch", 
        "givenName": "Christine", 
        "id": "sg:person.0600063176.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600063176.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.sbi.2006.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006869749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4809(89)90039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007121621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4809(89)90039-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007121621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(92)00038-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025755983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36440-4_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030291792", 
          "https://doi.org/10.1007/3-540-36440-4_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36440-4_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030291792", 
          "https://doi.org/10.1007/3-540-36440-4_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-008-9353-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031192902", 
          "https://doi.org/10.1007/s11538-008-9353-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2006.01.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042366113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45061-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044747979", 
          "https://doi.org/10.1007/3-540-45061-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051769953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/6.4.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511790492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098676015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511609589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098682967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705063", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5320-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705063", 
          "https://doi.org/10.1007/978-1-4612-5320-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5320-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705063", 
          "https://doi.org/10.1007/978-1-4612-5320-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-6846-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109706103", 
          "https://doi.org/10.1007/978-1-4899-6846-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-6846-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109706103", 
          "https://doi.org/10.1007/978-1-4899-6846-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08", 
    "datePublishedReg": "2008-08-01", 
    "description": "We consider large random trees under Gibbs distributions and prove a Large Deviation Principle (LDP) for the distribution of degrees of vertices of the tree. The LDP rate function is given explicitly. An immediate consequence is a Law of Large Numbers for the distribution of vertex degrees in a large random tree. Our motivation for this study comes from the analysis of RNA secondary structures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-008-9540-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2519894", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "132"
      }
    ], 
    "name": "Large Deviations for Random Trees", 
    "pagination": "551-560", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "369067cbe735f1f7e32fca020b1dad8192f443c6460869f124d39c5ca194b789"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20216937"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101493698"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-008-9540-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011452471"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-008-9540-0", 
      "https://app.dimensions.ai/details/publication/pub.1011452471"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000582.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-008-9540-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-008-9540-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-008-9540-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-008-9540-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-008-9540-0'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      43 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-008-9540-0 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author Nda21d9ec71a740dfae354e74a12c1b93
4 schema:citation sg:pub.10.1007/3-540-36440-4_19
5 sg:pub.10.1007/3-540-45061-0_2
6 sg:pub.10.1007/978-1-4612-5320-4
7 sg:pub.10.1007/978-1-4899-6846-3
8 sg:pub.10.1007/s11538-008-9353-y
9 https://app.dimensions.ai/details/publication/pub.1109705063
10 https://doi.org/10.1016/0010-4809(89)90039-6
11 https://doi.org/10.1016/0166-218x(92)00038-n
12 https://doi.org/10.1016/j.jmb.2006.01.067
13 https://doi.org/10.1016/j.sbi.2006.05.010
14 https://doi.org/10.1017/cbo9780511609589
15 https://doi.org/10.1017/cbo9780511790492
16 https://doi.org/10.1093/bioinformatics/6.4.309
17 https://doi.org/10.1093/nar/gkg365
18 schema:datePublished 2008-08
19 schema:datePublishedReg 2008-08-01
20 schema:description We consider large random trees under Gibbs distributions and prove a Large Deviation Principle (LDP) for the distribution of degrees of vertices of the tree. The LDP rate function is given explicitly. An immediate consequence is a Law of Large Numbers for the distribution of vertex degrees in a large random tree. Our motivation for this study comes from the analysis of RNA secondary structures.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N2229632acba74a6e84b1c5801603b854
25 N545eff503a5f43af9667148546df1ac5
26 sg:journal.1040979
27 schema:name Large Deviations for Random Trees
28 schema:pagination 551-560
29 schema:productId N14584861d6f14425a04ee02bd533b04a
30 N53d470d227ca4ab08861123be9d2dd71
31 N5b2413e1d7ea4f1e94db11e6939f3c8e
32 Na25648e7546f4fadbdc8017899118b64
33 Ned5ae6342a6144dd9c8633e2a842972b
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011452471
35 https://doi.org/10.1007/s10955-008-9540-0
36 schema:sdDatePublished 2019-04-10T15:11
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N00b7c67ee6c44b408d37d9cf0ffe73f9
39 schema:url http://link.springer.com/10.1007%2Fs10955-008-9540-0
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N00b7c67ee6c44b408d37d9cf0ffe73f9 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N14584861d6f14425a04ee02bd533b04a schema:name doi
46 schema:value 10.1007/s10955-008-9540-0
47 rdf:type schema:PropertyValue
48 N2229632acba74a6e84b1c5801603b854 schema:issueNumber 3
49 rdf:type schema:PublicationIssue
50 N53d470d227ca4ab08861123be9d2dd71 schema:name dimensions_id
51 schema:value pub.1011452471
52 rdf:type schema:PropertyValue
53 N545eff503a5f43af9667148546df1ac5 schema:volumeNumber 132
54 rdf:type schema:PublicationVolume
55 N5b2413e1d7ea4f1e94db11e6939f3c8e schema:name readcube_id
56 schema:value 369067cbe735f1f7e32fca020b1dad8192f443c6460869f124d39c5ca194b789
57 rdf:type schema:PropertyValue
58 N7c18d2a6f90148d787bc702ca03383ed rdf:first sg:person.0600063176.33
59 rdf:rest rdf:nil
60 Na25648e7546f4fadbdc8017899118b64 schema:name nlm_unique_id
61 schema:value 101493698
62 rdf:type schema:PropertyValue
63 Nda21d9ec71a740dfae354e74a12c1b93 rdf:first sg:person.01327752120.28
64 rdf:rest N7c18d2a6f90148d787bc702ca03383ed
65 Ned5ae6342a6144dd9c8633e2a842972b schema:name pubmed_id
66 schema:value 20216937
67 rdf:type schema:PropertyValue
68 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
69 schema:name Biological Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
72 schema:name Plant Biology
73 rdf:type schema:DefinedTerm
74 sg:grant.2519894 http://pending.schema.org/fundedItem sg:pub.10.1007/s10955-008-9540-0
75 rdf:type schema:MonetaryGrant
76 sg:journal.1040979 schema:issn 0022-4715
77 1572-9613
78 schema:name Journal of Statistical Physics
79 rdf:type schema:Periodical
80 sg:person.01327752120.28 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
81 schema:familyName Bakhtin
82 schema:givenName Yuri
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28
84 rdf:type schema:Person
85 sg:person.0600063176.33 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
86 schema:familyName Heitsch
87 schema:givenName Christine
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600063176.33
89 rdf:type schema:Person
90 sg:pub.10.1007/3-540-36440-4_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030291792
91 https://doi.org/10.1007/3-540-36440-4_19
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/3-540-45061-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044747979
94 https://doi.org/10.1007/3-540-45061-0_2
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-1-4612-5320-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705063
97 https://doi.org/10.1007/978-1-4612-5320-4
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-1-4899-6846-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109706103
100 https://doi.org/10.1007/978-1-4899-6846-3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11538-008-9353-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031192902
103 https://doi.org/10.1007/s11538-008-9353-y
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1109705063 schema:CreativeWork
106 https://doi.org/10.1016/0010-4809(89)90039-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007121621
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0166-218x(92)00038-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1025755983
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jmb.2006.01.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042366113
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.sbi.2006.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869749
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1017/cbo9780511609589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098682967
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/cbo9780511790492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098676015
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1093/bioinformatics/6.4.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413968
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1093/nar/gkg365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051769953
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
123 schema:name School of Mathematics, Georgia Tech., 30332-0160, Atlanta, GA, USA
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...