Correlation Functions of Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

A. Prats Ferrer, B. Eynard, P. Di Francesco, J.-B. Zuber

ABSTRACT

The Harish-Chandra correlation functions, i.e. integrals over compact groups of invariant monomials with the weight exp tr (XΩYΩ†) are computed for the orthogonal and symplectic groups. We proceed in two steps. First, the integral over the compact group is recast into a Gaussian integral over strictly upper triangular complex matrices (with some additional symmetries), supplemented by a summation over the Weyl group. This result follows from the study of loop equations in an associated two-matrix integral and may be viewed as the adequate version of Duistermaat–Heckman’s theorem for our correlation function integrals. Secondly, the Gaussian integration over triangular matrices is carried out and leads to compact determinantal expressions. More... »

PAGES

885-935

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-007-9350-9

DOI

http://dx.doi.org/10.1007/s10955-007-9350-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050040316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Service de Physique Th\u00e9orique de Saclay, CEA/DSM/SPhT, CNRS/SPM/URA 2306, Cedex, 91191, Gif-sur-Yvette, France", 
            "Universit\u00e9 Pierre et Marie Curie\u2013Paris6, CNRS UMR 7589, LPTHE Tour 24-25 5\u00e8me \u00e9tage, 4 Place Jussieu, Cedex 5, 75252, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prats Ferrer", 
        "givenName": "A.", 
        "id": "sg:person.016552552046.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552552046.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "L'Institut de physique th\u00e9orique", 
          "id": "https://www.grid.ac/institutes/grid.457338.e", 
          "name": [
            "Service de Physique Th\u00e9orique de Saclay, CEA/DSM/SPhT, CNRS/SPM/URA 2306, Cedex, 91191, Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eynard", 
        "givenName": "B.", 
        "id": "sg:person.012141030126.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141030126.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "L'Institut de physique th\u00e9orique", 
          "id": "https://www.grid.ac/institutes/grid.457338.e", 
          "name": [
            "Service de Physique Th\u00e9orique de Saclay, CEA/DSM/SPhT, CNRS/SPM/URA 2306, Cedex, 91191, Gif-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Francesco", 
        "givenName": "P.", 
        "id": "sg:person.011561167164.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011561167164.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Service de Physique Th\u00e9orique de Saclay, CEA/DSM/SPhT, CNRS/SPM/URA 2306, Cedex, 91191, Gif-sur-Yvette, France", 
            "Universit\u00e9 Pierre et Marie Curie\u2013Paris6, CNRS UMR 7589, LPTHE Tour 24-25 5\u00e8me \u00e9tage, 4 Place Jussieu, Cedex 5, 75252, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuber", 
        "givenName": "J.-B.", 
        "id": "sg:person.015245725416.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015245725416.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-4094-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003414083", 
          "https://doi.org/10.1007/978-1-4757-4094-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4094-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003414083", 
          "https://doi.org/10.1007/978-1-4757-4094-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012641743", 
          "https://doi.org/10.1007/bf01389132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90408-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013864413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90408-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013864413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02097004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016744176", 
          "https://doi.org/10.1007/bf02097004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02097004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016744176", 
          "https://doi.org/10.1007/bf02097004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(97)00088-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020435252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-006-1541-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022150037", 
          "https://doi.org/10.1007/s00220-006-1541-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035807749", 
          "https://doi.org/10.1007/bf01399506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01399506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035807749", 
          "https://doi.org/10.1007/bf01399506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)00084-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036715607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-003-0804-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037219402", 
          "https://doi.org/10.1007/s00220-003-0804-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/36/12/318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039715961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(93)90047-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041358961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(93)90047-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041358961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.524438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058101458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732392002913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062918816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2372387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400883974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096910946"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "The Harish-Chandra correlation functions, i.e. integrals over compact groups of invariant monomials with the weight exp tr (X\u03a9Y\u03a9\u2020) are computed for the orthogonal and symplectic groups. We proceed in two steps. First, the integral over the compact group is recast into a Gaussian integral over strictly upper triangular complex matrices (with some additional symmetries), supplemented by a summation over the Weyl group. This result follows from the study of loop equations in an associated two-matrix integral and may be viewed as the adequate version of Duistermaat\u2013Heckman\u2019s theorem for our correlation function integrals. Secondly, the Gaussian integration over triangular matrices is carried out and leads to compact determinantal expressions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-007-9350-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "name": "Correlation Functions of Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups", 
    "pagination": "885-935", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee5ff5e0c6dac4157fd388e3f9ccdfe88dfe10c8c13b50aeeb14123e842ebea6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-007-9350-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050040316"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-007-9350-9", 
      "https://app.dimensions.ai/details/publication/pub.1050040316"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-007-9350-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-007-9350-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-007-9350-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-007-9350-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-007-9350-9'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-007-9350-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3c22a7836c2741ec8ebaf235ff6ea236
4 schema:citation sg:pub.10.1007/978-1-4757-4094-3
5 sg:pub.10.1007/bf01389132
6 sg:pub.10.1007/bf01399506
7 sg:pub.10.1007/bf02097004
8 sg:pub.10.1007/s00220-003-0804-x
9 sg:pub.10.1007/s00220-006-1541-8
10 https://doi.org/10.1016/0370-1573(94)00084-g
11 https://doi.org/10.1016/0550-3213(89)90408-2
12 https://doi.org/10.1016/0550-3213(93)90047-s
13 https://doi.org/10.1016/s0370-1573(97)00088-4
14 https://doi.org/10.1063/1.1704292
15 https://doi.org/10.1063/1.524438
16 https://doi.org/10.1088/0305-4470/36/12/318
17 https://doi.org/10.1142/s0217732392002913
18 https://doi.org/10.1515/9781400883974
19 https://doi.org/10.2307/2372387
20 schema:datePublished 2007-12
21 schema:datePublishedReg 2007-12-01
22 schema:description The Harish-Chandra correlation functions, i.e. integrals over compact groups of invariant monomials with the weight exp tr (XΩYΩ†) are computed for the orthogonal and symplectic groups. We proceed in two steps. First, the integral over the compact group is recast into a Gaussian integral over strictly upper triangular complex matrices (with some additional symmetries), supplemented by a summation over the Weyl group. This result follows from the study of loop equations in an associated two-matrix integral and may be viewed as the adequate version of Duistermaat–Heckman’s theorem for our correlation function integrals. Secondly, the Gaussian integration over triangular matrices is carried out and leads to compact determinantal expressions.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N1b351953328348dcaef300c42c575668
27 N4619d7b2775448168340cae479f0e69e
28 sg:journal.1040979
29 schema:name Correlation Functions of Harish-Chandra Integrals over the Orthogonal and the Symplectic Groups
30 schema:pagination 885-935
31 schema:productId N96803db96ec2454db30cb7ac6146f7c7
32 Nf9557ddfc85c4ff3913fe8b9ba090a0d
33 Nfd93b112791c4b77abc42d1e79e47fdb
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050040316
35 https://doi.org/10.1007/s10955-007-9350-9
36 schema:sdDatePublished 2019-04-10T22:33
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N45fa80bd3c6d41228bcdc5a1fc9736d7
39 schema:url http://link.springer.com/10.1007%2Fs10955-007-9350-9
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0f9a59f9db3c47bc89662e66608ed4e1 rdf:first sg:person.015245725416.72
44 rdf:rest rdf:nil
45 N1b351953328348dcaef300c42c575668 schema:issueNumber 5-6
46 rdf:type schema:PublicationIssue
47 N27646846216b4439a9dbc0339ab72e90 rdf:first sg:person.011561167164.23
48 rdf:rest N0f9a59f9db3c47bc89662e66608ed4e1
49 N3c22a7836c2741ec8ebaf235ff6ea236 rdf:first sg:person.016552552046.89
50 rdf:rest Nf67fb36d5d814be0a295f016c106d027
51 N45fa80bd3c6d41228bcdc5a1fc9736d7 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N4619d7b2775448168340cae479f0e69e schema:volumeNumber 129
54 rdf:type schema:PublicationVolume
55 N96803db96ec2454db30cb7ac6146f7c7 schema:name dimensions_id
56 schema:value pub.1050040316
57 rdf:type schema:PropertyValue
58 Nf67fb36d5d814be0a295f016c106d027 rdf:first sg:person.012141030126.44
59 rdf:rest N27646846216b4439a9dbc0339ab72e90
60 Nf9557ddfc85c4ff3913fe8b9ba090a0d schema:name doi
61 schema:value 10.1007/s10955-007-9350-9
62 rdf:type schema:PropertyValue
63 Nfd93b112791c4b77abc42d1e79e47fdb schema:name readcube_id
64 schema:value ee5ff5e0c6dac4157fd388e3f9ccdfe88dfe10c8c13b50aeeb14123e842ebea6
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1040979 schema:issn 0022-4715
73 1572-9613
74 schema:name Journal of Statistical Physics
75 rdf:type schema:Periodical
76 sg:person.011561167164.23 schema:affiliation https://www.grid.ac/institutes/grid.457338.e
77 schema:familyName Di Francesco
78 schema:givenName P.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011561167164.23
80 rdf:type schema:Person
81 sg:person.012141030126.44 schema:affiliation https://www.grid.ac/institutes/grid.457338.e
82 schema:familyName Eynard
83 schema:givenName B.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141030126.44
85 rdf:type schema:Person
86 sg:person.015245725416.72 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
87 schema:familyName Zuber
88 schema:givenName J.-B.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015245725416.72
90 rdf:type schema:Person
91 sg:person.016552552046.89 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
92 schema:familyName Prats Ferrer
93 schema:givenName A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552552046.89
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4757-4094-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003414083
97 https://doi.org/10.1007/978-1-4757-4094-3
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01389132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012641743
100 https://doi.org/10.1007/bf01389132
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01399506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035807749
103 https://doi.org/10.1007/bf01399506
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02097004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016744176
106 https://doi.org/10.1007/bf02097004
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00220-003-0804-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037219402
109 https://doi.org/10.1007/s00220-003-0804-x
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00220-006-1541-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022150037
112 https://doi.org/10.1007/s00220-006-1541-8
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0370-1573(94)00084-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1036715607
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0550-3213(89)90408-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013864413
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0550-3213(93)90047-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1041358961
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0370-1573(97)00088-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020435252
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.1704292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774233
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.524438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058101458
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1088/0305-4470/36/12/318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039715961
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1142/s0217732392002913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918816
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1515/9781400883974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096910946
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2307/2372387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899062
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.457338.e schema:alternateName L'Institut de physique théorique
135 schema:name Service de Physique Théorique de Saclay, CEA/DSM/SPhT, CNRS/SPM/URA 2306, Cedex, 91191, Gif-sur-Yvette, France
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
138 schema:name Service de Physique Théorique de Saclay, CEA/DSM/SPhT, CNRS/SPM/URA 2306, Cedex, 91191, Gif-sur-Yvette, France
139 Université Pierre et Marie Curie–Paris6, CNRS UMR 7589, LPTHE Tour 24-25 5ème étage, 4 Place Jussieu, Cedex 5, 75252, Paris, France
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...