A Borel Transform Method for Locating Singularities of Taylor and Fourier Series View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-06

AUTHORS

W. Pauls, U. Frisch

ABSTRACT

Given a Taylor series with a finite radius of convergence, its Borel transform defines an entire function. A theorem of Pólya relates the large distance behavior of the Borel transform in different directions to singularities of the original function. With the help of the new asymptotic interpolation method of van der Hoeven, we show that from the knowledge of a large number of Taylor coefficients we can identify precisely the location of such singularities, as well as their type when they are isolated. There is no risk of getting artefacts with this method, which also gives us access to some of the singularities beyond the convergence disk. The method can also be applied to Fourier series of analytic periodic functions and is here tested on various instances constructed from solutions to the Burgers equation. Large precision on scaling exponents (up to twenty accurate digits) can be achieved. More... »

PAGES

1095-1119

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-007-9307-z

DOI

http://dx.doi.org/10.1007/s10955-007-9307-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018377725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nice Sophia Antipolis University", 
          "id": "https://www.grid.ac/institutes/grid.10737.32", 
          "name": [
            "CNRS UMR 6202, Observatoire de la C\u00f4te d\u2019Azur, BP 4229, 06304, Nice Cedex 4, France", 
            "Universit\u00e9 de Nice\u2013Sophia\u2013Antipolis, Nice, France", 
            "Universit\u00e9 de Nice\u2013Sophia\u2013Antipolis, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pauls", 
        "givenName": "W.", 
        "id": "sg:person.01347125013.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347125013.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nice Sophia Antipolis University", 
          "id": "https://www.grid.ac/institutes/grid.10737.32", 
          "name": [
            "Universit\u00e9 de Nice\u2013Sophia\u2013Antipolis, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "U.", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0305-4470/32/26/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005692342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1979.0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014289076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2006.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015945489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1964.tb00179.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018470386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2153-3490.1964.tb00179.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018470386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01180553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021566943", 
          "https://doi.org/10.1007/bf01180553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.16.010184.001443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024043469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003659900120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033357153", 
          "https://doi.org/10.1007/s003659900120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00968123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034340844", 
          "https://doi.org/10.1007/bf00968123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00968123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034340844", 
          "https://doi.org/10.1007/bf00968123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1960-0116457-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040048756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/36/21/304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040106337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/42/1/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040376116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1027308602344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048162189", 
          "https://doi.org/10.1023/a:1027308602344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsco.2002.0562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050630592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsco.2002.0562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050630592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01450097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052739305", 
          "https://doi.org/10.1007/bf01450097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112092003161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053862629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112082000159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053904689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112083001159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054037948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s030500410003173x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054038850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-7977(89)90011-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054554288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:019790040010096900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056990053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0139022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062839951"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-06", 
    "datePublishedReg": "2007-06-01", 
    "description": "Given a Taylor series with a finite radius of convergence, its Borel transform defines an entire function. A theorem of P\u00f3lya relates the large distance behavior of the Borel transform in different directions to singularities of the original function. With the help of the new asymptotic interpolation method of van der Hoeven, we show that from the knowledge of a large number of Taylor coefficients we can identify precisely the location of such singularities, as well as their type when they are isolated. There is no risk of getting artefacts with this method, which also gives us access to some of the singularities beyond the convergence disk. The method can also be applied to Fourier series of analytic periodic functions and is here tested on various instances constructed from solutions to the Burgers equation. Large precision on scaling exponents (up to twenty accurate digits) can be achieved.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-007-9307-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "A Borel Transform Method for Locating Singularities of Taylor and Fourier Series", 
    "pagination": "1095-1119", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "579064300e597daa85e61fbd6f09fb742ab264eabb39559d19e7927837d290a8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-007-9307-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018377725"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-007-9307-z", 
      "https://app.dimensions.ai/details/publication/pub.1018377725"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-007-9307-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-007-9307-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-007-9307-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-007-9307-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-007-9307-z'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-007-9307-z schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N5daac8583c3e43959df3204df0e0f189
4 schema:citation sg:pub.10.1007/bf00968123
5 sg:pub.10.1007/bf01180553
6 sg:pub.10.1007/bf01450097
7 sg:pub.10.1007/s003659900120
8 sg:pub.10.1023/a:1027308602344
9 https://doi.org/10.1006/jsco.2002.0562
10 https://doi.org/10.1016/0167-7977(89)90011-7
11 https://doi.org/10.1016/j.physd.2006.05.011
12 https://doi.org/10.1017/s0022112082000159
13 https://doi.org/10.1017/s0022112083001159
14 https://doi.org/10.1017/s0022112092003161
15 https://doi.org/10.1017/s030500410003173x
16 https://doi.org/10.1051/jphys:019790040010096900
17 https://doi.org/10.1088/0305-4470/32/26/305
18 https://doi.org/10.1088/0305-4470/36/21/304
19 https://doi.org/10.1088/1742-6596/42/1/016
20 https://doi.org/10.1090/s0025-5718-1960-0116457-2
21 https://doi.org/10.1098/rspa.1979.0009
22 https://doi.org/10.1103/physrevlett.79.4998
23 https://doi.org/10.1111/j.2153-3490.1964.tb00179.x
24 https://doi.org/10.1137/0139022
25 https://doi.org/10.1146/annurev.fl.16.010184.001443
26 schema:datePublished 2007-06
27 schema:datePublishedReg 2007-06-01
28 schema:description Given a Taylor series with a finite radius of convergence, its Borel transform defines an entire function. A theorem of Pólya relates the large distance behavior of the Borel transform in different directions to singularities of the original function. With the help of the new asymptotic interpolation method of van der Hoeven, we show that from the knowledge of a large number of Taylor coefficients we can identify precisely the location of such singularities, as well as their type when they are isolated. There is no risk of getting artefacts with this method, which also gives us access to some of the singularities beyond the convergence disk. The method can also be applied to Fourier series of analytic periodic functions and is here tested on various instances constructed from solutions to the Burgers equation. Large precision on scaling exponents (up to twenty accurate digits) can be achieved.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N92444f207b644b1683fc010287f01680
33 Nfe3708c27fe04f488170ea0b254fa89f
34 sg:journal.1040979
35 schema:name A Borel Transform Method for Locating Singularities of Taylor and Fourier Series
36 schema:pagination 1095-1119
37 schema:productId N6cd670f353ce4d5b85ceb584c7b7b7d7
38 N8d85b8026c4448978b718e2a5c2da5c5
39 Nff417c89ef12411ea68c53b98e8221e6
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018377725
41 https://doi.org/10.1007/s10955-007-9307-z
42 schema:sdDatePublished 2019-04-10T15:01
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nab6cdc52fac044bc9dca03960fbca8a5
45 schema:url http://link.springer.com/10.1007%2Fs10955-007-9307-z
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N47430cfe99914401b9b28dacb1cb4ed7 rdf:first sg:person.011615073661.47
50 rdf:rest rdf:nil
51 N5daac8583c3e43959df3204df0e0f189 rdf:first sg:person.01347125013.01
52 rdf:rest N47430cfe99914401b9b28dacb1cb4ed7
53 N6cd670f353ce4d5b85ceb584c7b7b7d7 schema:name doi
54 schema:value 10.1007/s10955-007-9307-z
55 rdf:type schema:PropertyValue
56 N8d85b8026c4448978b718e2a5c2da5c5 schema:name dimensions_id
57 schema:value pub.1018377725
58 rdf:type schema:PropertyValue
59 N92444f207b644b1683fc010287f01680 schema:issueNumber 6
60 rdf:type schema:PublicationIssue
61 Nab6cdc52fac044bc9dca03960fbca8a5 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nfe3708c27fe04f488170ea0b254fa89f schema:volumeNumber 127
64 rdf:type schema:PublicationVolume
65 Nff417c89ef12411ea68c53b98e8221e6 schema:name readcube_id
66 schema:value 579064300e597daa85e61fbd6f09fb742ab264eabb39559d19e7927837d290a8
67 rdf:type schema:PropertyValue
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information Systems
73 rdf:type schema:DefinedTerm
74 sg:journal.1040979 schema:issn 0022-4715
75 1572-9613
76 schema:name Journal of Statistical Physics
77 rdf:type schema:Periodical
78 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.10737.32
79 schema:familyName Frisch
80 schema:givenName U.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
82 rdf:type schema:Person
83 sg:person.01347125013.01 schema:affiliation https://www.grid.ac/institutes/grid.10737.32
84 schema:familyName Pauls
85 schema:givenName W.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347125013.01
87 rdf:type schema:Person
88 sg:pub.10.1007/bf00968123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034340844
89 https://doi.org/10.1007/bf00968123
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01180553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021566943
92 https://doi.org/10.1007/bf01180553
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01450097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052739305
95 https://doi.org/10.1007/bf01450097
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s003659900120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033357153
98 https://doi.org/10.1007/s003659900120
99 rdf:type schema:CreativeWork
100 sg:pub.10.1023/a:1027308602344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048162189
101 https://doi.org/10.1023/a:1027308602344
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1006/jsco.2002.0562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050630592
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0167-7977(89)90011-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054554288
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.physd.2006.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015945489
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1017/s0022112082000159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053904689
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1017/s0022112083001159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054037948
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1017/s0022112092003161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053862629
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1017/s030500410003173x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054038850
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1051/jphys:019790040010096900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990053
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/0305-4470/32/26/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005692342
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/0305-4470/36/21/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040106337
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/1742-6596/42/1/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040376116
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1090/s0025-5718-1960-0116457-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040048756
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1098/rspa.1979.0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014289076
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.79.4998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816436
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1111/j.2153-3490.1964.tb00179.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018470386
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1137/0139022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062839951
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1146/annurev.fl.16.010184.001443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024043469
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.10737.32 schema:alternateName Nice Sophia Antipolis University
138 schema:name CNRS UMR 6202, Observatoire de la Côte d’Azur, BP 4229, 06304, Nice Cedex 4, France
139 Université de Nice–Sophia–Antipolis, Nice, France
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...