On Travelling Waves for the Stochastic Fisher–Kolmogorov–Petrovsky–Piscunov Equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-08

AUTHORS

Joseph G. Conlon, Charles R. Doering

ABSTRACT

This paper is concerned with properties of the wave speed for the stochastically perturbed Fisher–Kolmogorov–Petrovsky–Piscunov (FKPP) equation. It was shown in the classical 1937 paper by Kolmogorov, Petrovsky and Piscunov that the large time behavior of the solution to the FKPP equation with Heaviside initial data is a travelling wave. In a seminal 1995 paper Mueller and Sowers proved that this also holds for a stochastically perturbed FKPP equation. The wave speed depends on the strength σ of the noise. In this paper bounds on the asymptotic behavior of the wave speed c(σ) as σ→0 and σ→∞ are obtained. More... »

PAGES

421-477

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2

DOI

http://dx.doi.org/10.1007/s10955-005-5960-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002104822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0911", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Maritime Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics and Michigan Center for Theoretical Physics, University of Michigan, 48109-1109, Ann Arbor, MI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conlon", 
        "givenName": "Joseph G.", 
        "id": "sg:person.01275345710.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics and Michigan Center for Theoretical Physics, University of Michigan, 48109-1109, Ann Arbor, MI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "Charles R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0378-4371(03)00203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003454328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(03)00203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003454328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003620879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005264259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005264259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012593516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012593516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01198848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018346716", 
          "https://doi.org/10.1007/bf01198848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01198848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018346716", 
          "https://doi.org/10.1007/bf01198848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90791-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90791-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020344089", 
          "https://doi.org/10.1007/bf01192463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020344089", 
          "https://doi.org/10.1007/bf01192463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027285532", 
          "https://doi.org/10.1007/bf00250432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027285532", 
          "https://doi.org/10.1007/bf00250432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.2597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041164831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.2597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041164831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042040326", 
          "https://doi.org/10.1007/bf01845994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042040326", 
          "https://doi.org/10.1007/bf01845994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8542-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045961506", 
          "https://doi.org/10.1007/978-1-4613-8542-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8542-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045961506", 
          "https://doi.org/10.1007/978-1-4613-8542-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(00)00068-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046128710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1937.tb02153.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049075368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053683754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053683754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144599364296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062878029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1994-022-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072267700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2004-028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072272546"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-08", 
    "datePublishedReg": "2005-08-01", 
    "description": "This paper is concerned with properties of the wave speed for the stochastically perturbed Fisher\u2013Kolmogorov\u2013Petrovsky\u2013Piscunov (FKPP) equation. It was shown in the classical 1937 paper by Kolmogorov, Petrovsky and Piscunov that the large time behavior of the solution to the FKPP equation with Heaviside initial data is a travelling wave. In a seminal 1995 paper Mueller and Sowers proved that this also holds for a stochastically perturbed FKPP equation. The wave speed depends on the strength \u03c3 of the noise. In this paper bounds on the asymptotic behavior of the wave speed c(\u03c3) as \u03c3\u21920 and \u03c3\u2192\u221e are obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-005-5960-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "120"
      }
    ], 
    "name": "On Travelling Waves for the Stochastic Fisher\u2013Kolmogorov\u2013Petrovsky\u2013Piscunov Equation", 
    "pagination": "421-477", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a06352a70d595f477858cfe7e11e76a73dadb26de1ba2d8fb88f074b77a2005"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-005-5960-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002104822"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-005-5960-2", 
      "https://app.dimensions.ai/details/publication/pub.1002104822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118336_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-005-5960-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-005-5960-2 schema:about anzsrc-for:09
2 anzsrc-for:0911
3 schema:author N0090ed2bfae8420ab5fdb5c4b3c64517
4 schema:citation sg:pub.10.1007/978-1-4613-8542-4
5 sg:pub.10.1007/bf00250432
6 sg:pub.10.1007/bf01192463
7 sg:pub.10.1007/bf01198848
8 sg:pub.10.1007/bf01845994
9 https://doi.org/10.1002/cpa.3160280302
10 https://doi.org/10.1006/jfan.1995.1038
11 https://doi.org/10.1016/0375-9601(87)90791-2
12 https://doi.org/10.1016/s0167-2789(00)00068-3
13 https://doi.org/10.1016/s0378-4371(03)00203-6
14 https://doi.org/10.1090/memo/0285
15 https://doi.org/10.1103/physreve.48.846
16 https://doi.org/10.1103/physreve.56.2597
17 https://doi.org/10.1103/physreve.58.107
18 https://doi.org/10.1103/physreve.59.3893
19 https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
20 https://doi.org/10.1137/s0036144599364296
21 https://doi.org/10.4153/cjm-1994-022-8
22 https://doi.org/10.4153/cmb-2004-028-2
23 schema:datePublished 2005-08
24 schema:datePublishedReg 2005-08-01
25 schema:description This paper is concerned with properties of the wave speed for the stochastically perturbed Fisher–Kolmogorov–Petrovsky–Piscunov (FKPP) equation. It was shown in the classical 1937 paper by Kolmogorov, Petrovsky and Piscunov that the large time behavior of the solution to the FKPP equation with Heaviside initial data is a travelling wave. In a seminal 1995 paper Mueller and Sowers proved that this also holds for a stochastically perturbed FKPP equation. The wave speed depends on the strength σ of the noise. In this paper bounds on the asymptotic behavior of the wave speed c(σ) as σ→0 and σ→∞ are obtained.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N6181afaa295a4b0faa591d80d724bd39
30 N7e7687faaf6541be8ce74a2da65142c3
31 sg:journal.1040979
32 schema:name On Travelling Waves for the Stochastic Fisher–Kolmogorov–Petrovsky–Piscunov Equation
33 schema:pagination 421-477
34 schema:productId N22375fe695454815ae29cc16e999b89d
35 N72c0b731dc76448ca73a9bfade8617cb
36 Nd493a6e65aeb476da2b36b3d74e5db9a
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002104822
38 https://doi.org/10.1007/s10955-005-5960-2
39 schema:sdDatePublished 2019-04-11T12:06
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nc1215a2479e44e87b14418681081acc1
42 schema:url http://link.springer.com/10.1007%2Fs10955-005-5960-2
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N0090ed2bfae8420ab5fdb5c4b3c64517 rdf:first sg:person.01275345710.70
47 rdf:rest Ne8bb88d521a442c39873c3d7a3e4af12
48 N22375fe695454815ae29cc16e999b89d schema:name readcube_id
49 schema:value 0a06352a70d595f477858cfe7e11e76a73dadb26de1ba2d8fb88f074b77a2005
50 rdf:type schema:PropertyValue
51 N6181afaa295a4b0faa591d80d724bd39 schema:issueNumber 3-4
52 rdf:type schema:PublicationIssue
53 N72c0b731dc76448ca73a9bfade8617cb schema:name doi
54 schema:value 10.1007/s10955-005-5960-2
55 rdf:type schema:PropertyValue
56 N7e7687faaf6541be8ce74a2da65142c3 schema:volumeNumber 120
57 rdf:type schema:PublicationVolume
58 Nc1215a2479e44e87b14418681081acc1 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nd493a6e65aeb476da2b36b3d74e5db9a schema:name dimensions_id
61 schema:value pub.1002104822
62 rdf:type schema:PropertyValue
63 Ne8bb88d521a442c39873c3d7a3e4af12 rdf:first sg:person.01161117310.79
64 rdf:rest rdf:nil
65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
66 schema:name Engineering
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0911 schema:inDefinedTermSet anzsrc-for:
69 schema:name Maritime Engineering
70 rdf:type schema:DefinedTerm
71 sg:journal.1040979 schema:issn 0022-4715
72 1572-9613
73 schema:name Journal of Statistical Physics
74 rdf:type schema:Periodical
75 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
76 schema:familyName Doering
77 schema:givenName Charles R.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
79 rdf:type schema:Person
80 sg:person.01275345710.70 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
81 schema:familyName Conlon
82 schema:givenName Joseph G.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4613-8542-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045961506
86 https://doi.org/10.1007/978-1-4613-8542-4
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf00250432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027285532
89 https://doi.org/10.1007/bf00250432
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01192463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020344089
92 https://doi.org/10.1007/bf01192463
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01198848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018346716
95 https://doi.org/10.1007/bf01198848
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01845994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042040326
98 https://doi.org/10.1007/bf01845994
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/cpa.3160280302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042063001
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1006/jfan.1995.1038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003620879
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0375-9601(87)90791-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019423900
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0167-2789(00)00068-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046128710
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0378-4371(03)00203-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003454328
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1090/memo/0285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343334
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physreve.48.846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012593516
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physreve.56.2597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041164831
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreve.58.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053683754
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physreve.59.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005264259
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1111/j.1469-1809.1937.tb02153.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049075368
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1137/s0036144599364296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878029
123 rdf:type schema:CreativeWork
124 https://doi.org/10.4153/cjm-1994-022-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072267700
125 rdf:type schema:CreativeWork
126 https://doi.org/10.4153/cmb-2004-028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072272546
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
129 schema:name Department of Mathematics and Michigan Center for Theoretical Physics, University of Michigan, 48109-1109, Ann Arbor, MI
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...