On Travelling Waves for the Stochastic Fisher–Kolmogorov–Petrovsky–Piscunov Equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-08

AUTHORS

Joseph G. Conlon, Charles R. Doering

ABSTRACT

This paper is concerned with properties of the wave speed for the stochastically perturbed Fisher–Kolmogorov–Petrovsky–Piscunov (FKPP) equation. It was shown in the classical 1937 paper by Kolmogorov, Petrovsky and Piscunov that the large time behavior of the solution to the FKPP equation with Heaviside initial data is a travelling wave. In a seminal 1995 paper Mueller and Sowers proved that this also holds for a stochastically perturbed FKPP equation. The wave speed depends on the strength σ of the noise. In this paper bounds on the asymptotic behavior of the wave speed c(σ) as σ→0 and σ→∞ are obtained. More... »

PAGES

421-477

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2

DOI

http://dx.doi.org/10.1007/s10955-005-5960-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002104822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0911", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Maritime Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics and Michigan Center for Theoretical Physics, University of Michigan, 48109-1109, Ann Arbor, MI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conlon", 
        "givenName": "Joseph G.", 
        "id": "sg:person.01275345710.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics and Michigan Center for Theoretical Physics, University of Michigan, 48109-1109, Ann Arbor, MI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "Charles R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0378-4371(03)00203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003454328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(03)00203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003454328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003620879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005264259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005264259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012593516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012593516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01198848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018346716", 
          "https://doi.org/10.1007/bf01198848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01198848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018346716", 
          "https://doi.org/10.1007/bf01198848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90791-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90791-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020344089", 
          "https://doi.org/10.1007/bf01192463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020344089", 
          "https://doi.org/10.1007/bf01192463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027285532", 
          "https://doi.org/10.1007/bf00250432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027285532", 
          "https://doi.org/10.1007/bf00250432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.2597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041164831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.2597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041164831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042040326", 
          "https://doi.org/10.1007/bf01845994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042040326", 
          "https://doi.org/10.1007/bf01845994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8542-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045961506", 
          "https://doi.org/10.1007/978-1-4613-8542-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8542-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045961506", 
          "https://doi.org/10.1007/978-1-4613-8542-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(00)00068-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046128710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1937.tb02153.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049075368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053683754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053683754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144599364296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062878029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1994-022-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072267700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2004-028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072272546"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-08", 
    "datePublishedReg": "2005-08-01", 
    "description": "This paper is concerned with properties of the wave speed for the stochastically perturbed Fisher\u2013Kolmogorov\u2013Petrovsky\u2013Piscunov (FKPP) equation. It was shown in the classical 1937 paper by Kolmogorov, Petrovsky and Piscunov that the large time behavior of the solution to the FKPP equation with Heaviside initial data is a travelling wave. In a seminal 1995 paper Mueller and Sowers proved that this also holds for a stochastically perturbed FKPP equation. The wave speed depends on the strength \u03c3 of the noise. In this paper bounds on the asymptotic behavior of the wave speed c(\u03c3) as \u03c3\u21920 and \u03c3\u2192\u221e are obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-005-5960-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "120"
      }
    ], 
    "name": "On Travelling Waves for the Stochastic Fisher\u2013Kolmogorov\u2013Petrovsky\u2013Piscunov Equation", 
    "pagination": "421-477", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a06352a70d595f477858cfe7e11e76a73dadb26de1ba2d8fb88f074b77a2005"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-005-5960-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002104822"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-005-5960-2", 
      "https://app.dimensions.ai/details/publication/pub.1002104822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118336_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-005-5960-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-005-5960-2 schema:about anzsrc-for:09
2 anzsrc-for:0911
3 schema:author N5b9198f304e84b7aa7fe60b2bb95b757
4 schema:citation sg:pub.10.1007/978-1-4613-8542-4
5 sg:pub.10.1007/bf00250432
6 sg:pub.10.1007/bf01192463
7 sg:pub.10.1007/bf01198848
8 sg:pub.10.1007/bf01845994
9 https://doi.org/10.1002/cpa.3160280302
10 https://doi.org/10.1006/jfan.1995.1038
11 https://doi.org/10.1016/0375-9601(87)90791-2
12 https://doi.org/10.1016/s0167-2789(00)00068-3
13 https://doi.org/10.1016/s0378-4371(03)00203-6
14 https://doi.org/10.1090/memo/0285
15 https://doi.org/10.1103/physreve.48.846
16 https://doi.org/10.1103/physreve.56.2597
17 https://doi.org/10.1103/physreve.58.107
18 https://doi.org/10.1103/physreve.59.3893
19 https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
20 https://doi.org/10.1137/s0036144599364296
21 https://doi.org/10.4153/cjm-1994-022-8
22 https://doi.org/10.4153/cmb-2004-028-2
23 schema:datePublished 2005-08
24 schema:datePublishedReg 2005-08-01
25 schema:description This paper is concerned with properties of the wave speed for the stochastically perturbed Fisher–Kolmogorov–Petrovsky–Piscunov (FKPP) equation. It was shown in the classical 1937 paper by Kolmogorov, Petrovsky and Piscunov that the large time behavior of the solution to the FKPP equation with Heaviside initial data is a travelling wave. In a seminal 1995 paper Mueller and Sowers proved that this also holds for a stochastically perturbed FKPP equation. The wave speed depends on the strength σ of the noise. In this paper bounds on the asymptotic behavior of the wave speed c(σ) as σ→0 and σ→∞ are obtained.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Ne9957f7c2ae84a80b76b1d30d0ac6c2d
30 Nfebcfbb62ba84561af243336783dd54c
31 sg:journal.1040979
32 schema:name On Travelling Waves for the Stochastic Fisher–Kolmogorov–Petrovsky–Piscunov Equation
33 schema:pagination 421-477
34 schema:productId N4e218ff594a4493ca59a07cdd3beedd0
35 Nc3c0f8d6a46d42f8b1d6ce263d7e2508
36 Nc92250fc9fb14476822377fb602d135c
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002104822
38 https://doi.org/10.1007/s10955-005-5960-2
39 schema:sdDatePublished 2019-04-11T12:06
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Na68d10fa5ab845a9b6ff54fcb6edff85
42 schema:url http://link.springer.com/10.1007%2Fs10955-005-5960-2
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N4e218ff594a4493ca59a07cdd3beedd0 schema:name dimensions_id
47 schema:value pub.1002104822
48 rdf:type schema:PropertyValue
49 N5b9198f304e84b7aa7fe60b2bb95b757 rdf:first sg:person.01275345710.70
50 rdf:rest N900ea154ce664cdc9d9528c41f94ed6f
51 N900ea154ce664cdc9d9528c41f94ed6f rdf:first sg:person.01161117310.79
52 rdf:rest rdf:nil
53 Na68d10fa5ab845a9b6ff54fcb6edff85 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nc3c0f8d6a46d42f8b1d6ce263d7e2508 schema:name readcube_id
56 schema:value 0a06352a70d595f477858cfe7e11e76a73dadb26de1ba2d8fb88f074b77a2005
57 rdf:type schema:PropertyValue
58 Nc92250fc9fb14476822377fb602d135c schema:name doi
59 schema:value 10.1007/s10955-005-5960-2
60 rdf:type schema:PropertyValue
61 Ne9957f7c2ae84a80b76b1d30d0ac6c2d schema:issueNumber 3-4
62 rdf:type schema:PublicationIssue
63 Nfebcfbb62ba84561af243336783dd54c schema:volumeNumber 120
64 rdf:type schema:PublicationVolume
65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
66 schema:name Engineering
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0911 schema:inDefinedTermSet anzsrc-for:
69 schema:name Maritime Engineering
70 rdf:type schema:DefinedTerm
71 sg:journal.1040979 schema:issn 0022-4715
72 1572-9613
73 schema:name Journal of Statistical Physics
74 rdf:type schema:Periodical
75 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
76 schema:familyName Doering
77 schema:givenName Charles R.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
79 rdf:type schema:Person
80 sg:person.01275345710.70 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
81 schema:familyName Conlon
82 schema:givenName Joseph G.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4613-8542-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045961506
86 https://doi.org/10.1007/978-1-4613-8542-4
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf00250432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027285532
89 https://doi.org/10.1007/bf00250432
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01192463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020344089
92 https://doi.org/10.1007/bf01192463
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01198848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018346716
95 https://doi.org/10.1007/bf01198848
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01845994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042040326
98 https://doi.org/10.1007/bf01845994
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/cpa.3160280302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042063001
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1006/jfan.1995.1038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003620879
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0375-9601(87)90791-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019423900
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0167-2789(00)00068-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046128710
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0378-4371(03)00203-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003454328
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1090/memo/0285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343334
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physreve.48.846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012593516
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physreve.56.2597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041164831
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreve.58.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053683754
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physreve.59.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005264259
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1111/j.1469-1809.1937.tb02153.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049075368
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1137/s0036144599364296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878029
123 rdf:type schema:CreativeWork
124 https://doi.org/10.4153/cjm-1994-022-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072267700
125 rdf:type schema:CreativeWork
126 https://doi.org/10.4153/cmb-2004-028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072272546
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
129 schema:name Department of Mathematics and Michigan Center for Theoretical Physics, University of Michigan, 48109-1109, Ann Arbor, MI
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...