On Travelling Waves for the Stochastic Fisher–Kolmogorov–Petrovsky–Piscunov Equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-08

AUTHORS

Joseph G. Conlon, Charles R. Doering

ABSTRACT

This paper is concerned with properties of the wave speed for the stochastically perturbed Fisher–Kolmogorov–Petrovsky–Piscunov (FKPP) equation. It was shown in the classical 1937 paper by Kolmogorov, Petrovsky and Piscunov that the large time behavior of the solution to the FKPP equation with Heaviside initial data is a travelling wave. In a seminal 1995 paper Mueller and Sowers proved that this also holds for a stochastically perturbed FKPP equation. The wave speed depends on the strength σ of the noise. In this paper bounds on the asymptotic behavior of the wave speed c(σ) as σ→0 and σ→∞ are obtained. More... »

PAGES

421-477

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2

DOI

http://dx.doi.org/10.1007/s10955-005-5960-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002104822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0911", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Maritime Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics and Michigan Center for Theoretical Physics, University of Michigan, 48109-1109, Ann Arbor, MI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conlon", 
        "givenName": "Joseph G.", 
        "id": "sg:person.01275345710.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics and Michigan Center for Theoretical Physics, University of Michigan, 48109-1109, Ann Arbor, MI"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "Charles R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0378-4371(03)00203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003454328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(03)00203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003454328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003620879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005264259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.3893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005264259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012593516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012593516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01198848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018346716", 
          "https://doi.org/10.1007/bf01198848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01198848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018346716", 
          "https://doi.org/10.1007/bf01198848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90791-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90791-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019423900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020344089", 
          "https://doi.org/10.1007/bf01192463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020344089", 
          "https://doi.org/10.1007/bf01192463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027285532", 
          "https://doi.org/10.1007/bf00250432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00250432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027285532", 
          "https://doi.org/10.1007/bf00250432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.2597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041164831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.2597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041164831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042040326", 
          "https://doi.org/10.1007/bf01845994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01845994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042040326", 
          "https://doi.org/10.1007/bf01845994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8542-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045961506", 
          "https://doi.org/10.1007/978-1-4613-8542-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8542-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045961506", 
          "https://doi.org/10.1007/978-1-4613-8542-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(00)00068-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046128710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1937.tb02153.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049075368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053683754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053683754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144599364296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062878029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1994-022-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072267700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2004-028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072272546"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-08", 
    "datePublishedReg": "2005-08-01", 
    "description": "This paper is concerned with properties of the wave speed for the stochastically perturbed Fisher\u2013Kolmogorov\u2013Petrovsky\u2013Piscunov (FKPP) equation. It was shown in the classical 1937 paper by Kolmogorov, Petrovsky and Piscunov that the large time behavior of the solution to the FKPP equation with Heaviside initial data is a travelling wave. In a seminal 1995 paper Mueller and Sowers proved that this also holds for a stochastically perturbed FKPP equation. The wave speed depends on the strength \u03c3 of the noise. In this paper bounds on the asymptotic behavior of the wave speed c(\u03c3) as \u03c3\u21920 and \u03c3\u2192\u221e are obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10955-005-5960-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040979", 
        "issn": [
          "0022-4715", 
          "1572-9613"
        ], 
        "name": "Journal of Statistical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "120"
      }
    ], 
    "name": "On Travelling Waves for the Stochastic Fisher\u2013Kolmogorov\u2013Petrovsky\u2013Piscunov Equation", 
    "pagination": "421-477", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a06352a70d595f477858cfe7e11e76a73dadb26de1ba2d8fb88f074b77a2005"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10955-005-5960-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002104822"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10955-005-5960-2", 
      "https://app.dimensions.ai/details/publication/pub.1002104822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118336_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10955-005-5960-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10955-005-5960-2'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10955-005-5960-2 schema:about anzsrc-for:09
2 anzsrc-for:0911
3 schema:author N1e3a96c612ea40eb81a001605a3c876e
4 schema:citation sg:pub.10.1007/978-1-4613-8542-4
5 sg:pub.10.1007/bf00250432
6 sg:pub.10.1007/bf01192463
7 sg:pub.10.1007/bf01198848
8 sg:pub.10.1007/bf01845994
9 https://doi.org/10.1002/cpa.3160280302
10 https://doi.org/10.1006/jfan.1995.1038
11 https://doi.org/10.1016/0375-9601(87)90791-2
12 https://doi.org/10.1016/s0167-2789(00)00068-3
13 https://doi.org/10.1016/s0378-4371(03)00203-6
14 https://doi.org/10.1090/memo/0285
15 https://doi.org/10.1103/physreve.48.846
16 https://doi.org/10.1103/physreve.56.2597
17 https://doi.org/10.1103/physreve.58.107
18 https://doi.org/10.1103/physreve.59.3893
19 https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
20 https://doi.org/10.1137/s0036144599364296
21 https://doi.org/10.4153/cjm-1994-022-8
22 https://doi.org/10.4153/cmb-2004-028-2
23 schema:datePublished 2005-08
24 schema:datePublishedReg 2005-08-01
25 schema:description This paper is concerned with properties of the wave speed for the stochastically perturbed Fisher–Kolmogorov–Petrovsky–Piscunov (FKPP) equation. It was shown in the classical 1937 paper by Kolmogorov, Petrovsky and Piscunov that the large time behavior of the solution to the FKPP equation with Heaviside initial data is a travelling wave. In a seminal 1995 paper Mueller and Sowers proved that this also holds for a stochastically perturbed FKPP equation. The wave speed depends on the strength σ of the noise. In this paper bounds on the asymptotic behavior of the wave speed c(σ) as σ→0 and σ→∞ are obtained.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N085ef802ddc14c05bd8ba1c97e4545e4
30 Nf98e596964c84794b3944708cea393e7
31 sg:journal.1040979
32 schema:name On Travelling Waves for the Stochastic Fisher–Kolmogorov–Petrovsky–Piscunov Equation
33 schema:pagination 421-477
34 schema:productId N0ba705bf890c4e04be1f0071cc390a1c
35 N51bc1deec0b4487c9519e2654063587d
36 N978df169388c47af8e1e9f446af86a77
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002104822
38 https://doi.org/10.1007/s10955-005-5960-2
39 schema:sdDatePublished 2019-04-11T12:06
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nee542b98fee14b159e7c83b21b273fd0
42 schema:url http://link.springer.com/10.1007%2Fs10955-005-5960-2
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N085ef802ddc14c05bd8ba1c97e4545e4 schema:volumeNumber 120
47 rdf:type schema:PublicationVolume
48 N0ba705bf890c4e04be1f0071cc390a1c schema:name readcube_id
49 schema:value 0a06352a70d595f477858cfe7e11e76a73dadb26de1ba2d8fb88f074b77a2005
50 rdf:type schema:PropertyValue
51 N1e3a96c612ea40eb81a001605a3c876e rdf:first sg:person.01275345710.70
52 rdf:rest Nd90dafa551294854a5c79b0810ef9016
53 N51bc1deec0b4487c9519e2654063587d schema:name doi
54 schema:value 10.1007/s10955-005-5960-2
55 rdf:type schema:PropertyValue
56 N978df169388c47af8e1e9f446af86a77 schema:name dimensions_id
57 schema:value pub.1002104822
58 rdf:type schema:PropertyValue
59 Nd90dafa551294854a5c79b0810ef9016 rdf:first sg:person.01161117310.79
60 rdf:rest rdf:nil
61 Nee542b98fee14b159e7c83b21b273fd0 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nf98e596964c84794b3944708cea393e7 schema:issueNumber 3-4
64 rdf:type schema:PublicationIssue
65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
66 schema:name Engineering
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0911 schema:inDefinedTermSet anzsrc-for:
69 schema:name Maritime Engineering
70 rdf:type schema:DefinedTerm
71 sg:journal.1040979 schema:issn 0022-4715
72 1572-9613
73 schema:name Journal of Statistical Physics
74 rdf:type schema:Periodical
75 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
76 schema:familyName Doering
77 schema:givenName Charles R.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
79 rdf:type schema:Person
80 sg:person.01275345710.70 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
81 schema:familyName Conlon
82 schema:givenName Joseph G.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4613-8542-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045961506
86 https://doi.org/10.1007/978-1-4613-8542-4
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf00250432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027285532
89 https://doi.org/10.1007/bf00250432
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01192463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020344089
92 https://doi.org/10.1007/bf01192463
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01198848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018346716
95 https://doi.org/10.1007/bf01198848
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01845994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042040326
98 https://doi.org/10.1007/bf01845994
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/cpa.3160280302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042063001
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1006/jfan.1995.1038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003620879
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0375-9601(87)90791-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019423900
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0167-2789(00)00068-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046128710
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0378-4371(03)00203-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003454328
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1090/memo/0285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343334
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physreve.48.846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012593516
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physreve.56.2597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041164831
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreve.58.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053683754
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physreve.59.3893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005264259
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1111/j.1469-1809.1937.tb02153.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049075368
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1137/s0036144599364296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878029
123 rdf:type schema:CreativeWork
124 https://doi.org/10.4153/cjm-1994-022-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072267700
125 rdf:type schema:CreativeWork
126 https://doi.org/10.4153/cmb-2004-028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072272546
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
129 schema:name Department of Mathematics and Michigan Center for Theoretical Physics, University of Michigan, 48109-1109, Ann Arbor, MI
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...