Ontology type: schema:ScholarlyArticle
2017-08-29
AUTHORSSunita Malik, Heena Gupta, Dimple Sharma, Vinod Kumar Sharma
ABSTRACTExcess molar enthalpies HE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{{}}^{\text{E}} $$\end{document} for binary 1,3-dioxolane (1) + 1,4-dioxane (2) or N-methylpyrrolidin-2-one (2) + cyclohexanone or cycloheptanone (3) and H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} for ternary 1,3-dioxolane (1) + N-methylpyrrolidin-2-one or 1,4-dioxane (2) + cyclohexanone or cycloheptanone (3) mixtures have been measured over the entire mole fraction range at 308.15 K and atmospheric pressure using a micro differential calorimeter (Model-l DSC 7 Evo). The HE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{{}}^{\text{E}} $$\end{document} and H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} data have been correlated with composition by fitting of the corresponding data to the Redlich–Kister equation. The topology of the constituent molecules (Graph theory) has been utilized to predict H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} values of the present mixtures. It is observed that the H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} values calculated by Graph theory compare well with their corresponding experimental values. The H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} data have also been tested in terms of the Prigogine–Flory–Patterson (PFP) theory. More... »
PAGES1639-1657
http://scigraph.springernature.com/pub.10.1007/s10953-017-0670-3
DOIhttp://dx.doi.org/10.1007/s10953-017-0670-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1091404798
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Chemistry, M. D. University, Rohtak, Haryana, India",
"id": "http://www.grid.ac/institutes/grid.411524.7",
"name": [
"Department of Chemistry, M. D. University, Rohtak, Haryana, India"
],
"type": "Organization"
},
"familyName": "Malik",
"givenName": "Sunita",
"id": "sg:person.07451725561.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07451725561.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemistry, M. D. University, Rohtak, Haryana, India",
"id": "http://www.grid.ac/institutes/grid.411524.7",
"name": [
"Department of Chemistry, M. D. University, Rohtak, Haryana, India"
],
"type": "Organization"
},
"familyName": "Gupta",
"givenName": "Heena",
"id": "sg:person.014564677611.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564677611.97"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemistry, Hindu College, Sonepat, Haryana, India",
"id": "http://www.grid.ac/institutes/grid.412537.6",
"name": [
"Department of Chemistry, Hindu College, Sonepat, Haryana, India"
],
"type": "Organization"
},
"familyName": "Sharma",
"givenName": "Dimple",
"id": "sg:person.016170676711.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170676711.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemistry, M. D. University, Rohtak, Haryana, India",
"id": "http://www.grid.ac/institutes/grid.411524.7",
"name": [
"Department of Chemistry, M. D. University, Rohtak, Haryana, India"
],
"type": "Organization"
},
"familyName": "Sharma",
"givenName": "Vinod Kumar",
"id": "sg:person.014767060331.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014767060331.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10973-015-4412-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048489652",
"https://doi.org/10.1007/s10973-015-4412-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-016-5236-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015748596",
"https://doi.org/10.1007/s10973-016-5236-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10953-014-0152-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020300078",
"https://doi.org/10.1007/s10953-014-0152-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10953-008-9294-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051034347",
"https://doi.org/10.1007/s10953-008-9294-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00114-009-0536-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050298076",
"https://doi.org/10.1007/s00114-009-0536-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00650519",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005494748",
"https://doi.org/10.1007/bf00650519"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-08-29",
"datePublishedReg": "2017-08-29",
"description": "Excess molar enthalpies HE\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ H_{{}}^{\\text{E}} $$\\end{document} for binary 1,3-dioxolane (1)\u00a0+\u00a01,4-dioxane (2) or N-methylpyrrolidin-2-one (2)\u00a0+\u00a0cyclohexanone or cycloheptanone (3) and H123E\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ H_{123}^{\\text{E}} $$\\end{document} for ternary 1,3-dioxolane (1)\u00a0+\u00a0N-methylpyrrolidin-2-one or 1,4-dioxane (2)\u00a0+\u00a0cyclohexanone or cycloheptanone (3) mixtures have been measured over the entire mole fraction range at 308.15\u00a0K and atmospheric pressure using a micro differential calorimeter (Model-l DSC 7 Evo). The HE\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ H_{{}}^{\\text{E}} $$\\end{document} and H123E\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ H_{123}^{\\text{E}} $$\\end{document} data have been correlated with composition by fitting of the corresponding data to the Redlich\u2013Kister equation. The topology of the constituent molecules (Graph theory) has been utilized to predict H123E\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ H_{123}^{\\text{E}} $$\\end{document} values of the present mixtures. It is observed that the H123E\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ H_{123}^{\\text{E}} $$\\end{document} values calculated by Graph theory compare well with their corresponding experimental values. The H123E\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ H_{123}^{\\text{E}} $$\\end{document} data have also been tested in terms of the Prigogine\u2013Flory\u2013Patterson (PFP) theory.",
"genre": "article",
"id": "sg:pub.10.1007/s10953-017-0670-3",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1015946",
"issn": [
"0095-9782",
"1572-8927"
],
"name": "Journal of Solution Chemistry",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "46"
}
],
"keywords": [
"graph theory",
"equations",
"theory",
"differential calorimeter",
"topology",
"corresponding experimental values",
"experimental values",
"constituent molecules",
"binaries",
"values",
"terms",
"fraction range",
"data",
"Prigogine\u2013Flory",
"Patterson theory",
"enthalpy",
"mixture",
"range",
"atmospheric pressure",
"calorimeter",
"pressure",
"Redlich\u2013Kister equation",
"molecules",
"molar enthalpies",
"composition",
"present mixtures",
"excess molar enthalpies",
"dioxane",
"cyclohexanone",
"cyclic ethers",
"dioxolane",
"ether",
"lactams",
"ketones",
"N-methylpyrrolidin",
"cycloheptanone",
"cycloheptanone (3) mixtures",
"Mixtures Containing Cyclic Ethers",
"cyclic ketones"
],
"name": "Excess Molar Enthalpies for Binary and Ternary Mixtures Containing Cyclic Ethers, Lactam and Cyclic Ketones",
"pagination": "1639-1657",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1091404798"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10953-017-0670-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10953-017-0670-3",
"https://app.dimensions.ai/details/publication/pub.1091404798"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_731.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10953-017-0670-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10953-017-0670-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10953-017-0670-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10953-017-0670-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10953-017-0670-3'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
21 PREDICATES
69 URIs
55 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10953-017-0670-3 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | Nd18c8412034a465fa3e198f79467ef74 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00650519 |
5 | ″ | ″ | sg:pub.10.1007/s00114-009-0536-7 |
6 | ″ | ″ | sg:pub.10.1007/s10953-008-9294-y |
7 | ″ | ″ | sg:pub.10.1007/s10953-014-0152-9 |
8 | ″ | ″ | sg:pub.10.1007/s10973-015-4412-8 |
9 | ″ | ″ | sg:pub.10.1007/s10973-016-5236-x |
10 | ″ | schema:datePublished | 2017-08-29 |
11 | ″ | schema:datePublishedReg | 2017-08-29 |
12 | ″ | schema:description | Excess molar enthalpies HE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{{}}^{\text{E}} $$\end{document} for binary 1,3-dioxolane (1) + 1,4-dioxane (2) or N-methylpyrrolidin-2-one (2) + cyclohexanone or cycloheptanone (3) and H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} for ternary 1,3-dioxolane (1) + N-methylpyrrolidin-2-one or 1,4-dioxane (2) + cyclohexanone or cycloheptanone (3) mixtures have been measured over the entire mole fraction range at 308.15 K and atmospheric pressure using a micro differential calorimeter (Model-l DSC 7 Evo). The HE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{{}}^{\text{E}} $$\end{document} and H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} data have been correlated with composition by fitting of the corresponding data to the Redlich–Kister equation. The topology of the constituent molecules (Graph theory) has been utilized to predict H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} values of the present mixtures. It is observed that the H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} values calculated by Graph theory compare well with their corresponding experimental values. The H123E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H_{123}^{\text{E}} $$\end{document} data have also been tested in terms of the Prigogine–Flory–Patterson (PFP) theory. |
13 | ″ | schema:genre | article |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | Nd0922e5f50474f1a8b1f2833f841228a |
16 | ″ | ″ | Nefddb870c4b043fea1019b52b0b065ae |
17 | ″ | ″ | sg:journal.1015946 |
18 | ″ | schema:keywords | Mixtures Containing Cyclic Ethers |
19 | ″ | ″ | N-methylpyrrolidin |
20 | ″ | ″ | Patterson theory |
21 | ″ | ″ | Prigogine–Flory |
22 | ″ | ″ | Redlich–Kister equation |
23 | ″ | ″ | atmospheric pressure |
24 | ″ | ″ | binaries |
25 | ″ | ″ | calorimeter |
26 | ″ | ″ | composition |
27 | ″ | ″ | constituent molecules |
28 | ″ | ″ | corresponding experimental values |
29 | ″ | ″ | cyclic ethers |
30 | ″ | ″ | cyclic ketones |
31 | ″ | ″ | cycloheptanone |
32 | ″ | ″ | cycloheptanone (3) mixtures |
33 | ″ | ″ | cyclohexanone |
34 | ″ | ″ | data |
35 | ″ | ″ | differential calorimeter |
36 | ″ | ″ | dioxane |
37 | ″ | ″ | dioxolane |
38 | ″ | ″ | enthalpy |
39 | ″ | ″ | equations |
40 | ″ | ″ | ether |
41 | ″ | ″ | excess molar enthalpies |
42 | ″ | ″ | experimental values |
43 | ″ | ″ | fraction range |
44 | ″ | ″ | graph theory |
45 | ″ | ″ | ketones |
46 | ″ | ″ | lactams |
47 | ″ | ″ | mixture |
48 | ″ | ″ | molar enthalpies |
49 | ″ | ″ | molecules |
50 | ″ | ″ | present mixtures |
51 | ″ | ″ | pressure |
52 | ″ | ″ | range |
53 | ″ | ″ | terms |
54 | ″ | ″ | theory |
55 | ″ | ″ | topology |
56 | ″ | ″ | values |
57 | ″ | schema:name | Excess Molar Enthalpies for Binary and Ternary Mixtures Containing Cyclic Ethers, Lactam and Cyclic Ketones |
58 | ″ | schema:pagination | 1639-1657 |
59 | ″ | schema:productId | N3d9df65e6f85464fa403a67cf58f3206 |
60 | ″ | ″ | Nec7027d30a544ecab095944faf8393ef |
61 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1091404798 |
62 | ″ | ″ | https://doi.org/10.1007/s10953-017-0670-3 |
63 | ″ | schema:sdDatePublished | 2022-08-04T17:04 |
64 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
65 | ″ | schema:sdPublisher | N08044bdf69a14690abfc3abaf7c22371 |
66 | ″ | schema:url | https://doi.org/10.1007/s10953-017-0670-3 |
67 | ″ | sgo:license | sg:explorer/license/ |
68 | ″ | sgo:sdDataset | articles |
69 | ″ | rdf:type | schema:ScholarlyArticle |
70 | N08044bdf69a14690abfc3abaf7c22371 | schema:name | Springer Nature - SN SciGraph project |
71 | ″ | rdf:type | schema:Organization |
72 | N3d9df65e6f85464fa403a67cf58f3206 | schema:name | dimensions_id |
73 | ″ | schema:value | pub.1091404798 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | N9ba4d4f6131b43db923fa00a0ac1bfde | rdf:first | sg:person.016170676711.99 |
76 | ″ | rdf:rest | Ne383a2b2e4324695938dfdb1c11431a5 |
77 | Nd0922e5f50474f1a8b1f2833f841228a | schema:issueNumber | 8 |
78 | ″ | rdf:type | schema:PublicationIssue |
79 | Nd18c8412034a465fa3e198f79467ef74 | rdf:first | sg:person.07451725561.43 |
80 | ″ | rdf:rest | Nd4adc2a7a9364e41b4da044ead106595 |
81 | Nd4adc2a7a9364e41b4da044ead106595 | rdf:first | sg:person.014564677611.97 |
82 | ″ | rdf:rest | N9ba4d4f6131b43db923fa00a0ac1bfde |
83 | Ne383a2b2e4324695938dfdb1c11431a5 | rdf:first | sg:person.014767060331.30 |
84 | ″ | rdf:rest | rdf:nil |
85 | Nec7027d30a544ecab095944faf8393ef | schema:name | doi |
86 | ″ | schema:value | 10.1007/s10953-017-0670-3 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | Nefddb870c4b043fea1019b52b0b065ae | schema:volumeNumber | 46 |
89 | ″ | rdf:type | schema:PublicationVolume |
90 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
91 | ″ | schema:name | Chemical Sciences |
92 | ″ | rdf:type | schema:DefinedTerm |
93 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Physical Chemistry (incl. Structural) |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | sg:journal.1015946 | schema:issn | 0095-9782 |
97 | ″ | ″ | 1572-8927 |
98 | ″ | schema:name | Journal of Solution Chemistry |
99 | ″ | schema:publisher | Springer Nature |
100 | ″ | rdf:type | schema:Periodical |
101 | sg:person.014564677611.97 | schema:affiliation | grid-institutes:grid.411524.7 |
102 | ″ | schema:familyName | Gupta |
103 | ″ | schema:givenName | Heena |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564677611.97 |
105 | ″ | rdf:type | schema:Person |
106 | sg:person.014767060331.30 | schema:affiliation | grid-institutes:grid.411524.7 |
107 | ″ | schema:familyName | Sharma |
108 | ″ | schema:givenName | Vinod Kumar |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014767060331.30 |
110 | ″ | rdf:type | schema:Person |
111 | sg:person.016170676711.99 | schema:affiliation | grid-institutes:grid.412537.6 |
112 | ″ | schema:familyName | Sharma |
113 | ″ | schema:givenName | Dimple |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170676711.99 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.07451725561.43 | schema:affiliation | grid-institutes:grid.411524.7 |
117 | ″ | schema:familyName | Malik |
118 | ″ | schema:givenName | Sunita |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07451725561.43 |
120 | ″ | rdf:type | schema:Person |
121 | sg:pub.10.1007/bf00650519 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005494748 |
122 | ″ | ″ | https://doi.org/10.1007/bf00650519 |
123 | ″ | rdf:type | schema:CreativeWork |
124 | sg:pub.10.1007/s00114-009-0536-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050298076 |
125 | ″ | ″ | https://doi.org/10.1007/s00114-009-0536-7 |
126 | ″ | rdf:type | schema:CreativeWork |
127 | sg:pub.10.1007/s10953-008-9294-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051034347 |
128 | ″ | ″ | https://doi.org/10.1007/s10953-008-9294-y |
129 | ″ | rdf:type | schema:CreativeWork |
130 | sg:pub.10.1007/s10953-014-0152-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020300078 |
131 | ″ | ″ | https://doi.org/10.1007/s10953-014-0152-9 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | sg:pub.10.1007/s10973-015-4412-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048489652 |
134 | ″ | ″ | https://doi.org/10.1007/s10973-015-4412-8 |
135 | ″ | rdf:type | schema:CreativeWork |
136 | sg:pub.10.1007/s10973-016-5236-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015748596 |
137 | ″ | ″ | https://doi.org/10.1007/s10973-016-5236-x |
138 | ″ | rdf:type | schema:CreativeWork |
139 | grid-institutes:grid.411524.7 | schema:alternateName | Department of Chemistry, M. D. University, Rohtak, Haryana, India |
140 | ″ | schema:name | Department of Chemistry, M. D. University, Rohtak, Haryana, India |
141 | ″ | rdf:type | schema:Organization |
142 | grid-institutes:grid.412537.6 | schema:alternateName | Department of Chemistry, Hindu College, Sonepat, Haryana, India |
143 | ″ | schema:name | Department of Chemistry, Hindu College, Sonepat, Haryana, India |
144 | ″ | rdf:type | schema:Organization |