Conductivity Properties of Perovskite Nickelates and Cuprates Depend on the Oxidation States of the Metal Ions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-09-26

AUTHORS

Sven Larsson

ABSTRACT

Superconducting nickelates in thin film perovskite structures, designed to be isostructural with the Cu(II) cuprates, have been discovered recently by Zhou et al. (Appl. Mater. Interfaces 10, 1463-1467, 1) and Li et al. (Nature 572, 624-627, 2) The strategies of both groups, to make nickelates as similar to the cuprates as possible by using planar NiO2 superlattice structures, proved successful. Ni(I) and Ni(III) are superconducting in superlattices, although TC is lower than in most Cu(II) cuprates. Here we find that a “3-oxidation states rule” applies to nickelate superlattices based on Ni(I) and Ni(III). It is predicted that the oxides of Ni(II), Cu(I), and Cu(III) cannot superconduct, because of violation of the 3-rule. This rule is derived here, along with other rules where the number of interacting oxidation states is decisive for the conduction properties of the metal ion. The Mott model is replaced by a free energy model. More... »

PAGES

3101-3107

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-022-06402-6

DOI

http://dx.doi.org/10.1007/s10948-022-06402-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1151328948


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physical Chemistry, Chalmers University of Technology, SE-41296, G\u00f6teborg, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5371.0", 
          "name": [
            "Department of Physical Chemistry, Chalmers University of Technology, SE-41296, G\u00f6teborg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larsson", 
        "givenName": "Sven", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01339455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039883179", 
          "https://doi.org/10.1007/bf01339455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036381635", 
          "https://doi.org/10.1007/bf01303701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/121580a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005815770", 
          "https://doi.org/10.1038/121580a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-019-1496-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120632299", 
          "https://doi.org/10.1038/s41586-019-1496-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-016-3666-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045640798", 
          "https://doi.org/10.1007/s10948-016-3666-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-26", 
    "datePublishedReg": "2022-09-26", 
    "description": "Superconducting nickelates in thin film perovskite structures, designed to be isostructural with the Cu(II) cuprates, have been discovered recently by Zhou et al.\u00a0(Appl. Mater. Interfaces 10, 1463-1467, 1) and Li et al.\u00a0(Nature 572, 624-627, 2) The strategies of both groups, to make nickelates as similar to the cuprates as possible by using planar NiO2 superlattice structures, proved successful. Ni(I) and Ni(III) are superconducting in superlattices, although TC is lower than in most Cu(II) cuprates. Here we find that a \u201c3-oxidation states rule\u201d applies to nickelate superlattices based on Ni(I) and Ni(III). It is predicted that the oxides of Ni(II), Cu(I), and Cu(III) cannot superconduct, because of violation of the 3-rule. This rule is derived here, along with other rules where the number of interacting oxidation states is decisive for the conduction properties of the metal ion. The Mott model is replaced by a free energy model.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-022-06402-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "oxidation state", 
      "metal ions", 
      "perovskite structure", 
      "conductivity properties", 
      "free energy model", 
      "perovskite nickelates", 
      "ions", 
      "nickelates", 
      "conduction properties", 
      "properties", 
      "structure", 
      "oxide", 
      "superlattice structure", 
      "Mott model", 
      "cuprates", 
      "al", 
      "state", 
      "superlattices", 
      "et al", 
      "group", 
      "energy model", 
      "strategies", 
      "Tc", 
      "Li et al", 
      "model", 
      "number", 
      "Zhou et al", 
      "rules", 
      "violation"
    ], 
    "name": "Conductivity Properties of Perovskite Nickelates and Cuprates Depend on the Oxidation States of the Metal Ions", 
    "pagination": "3101-3107", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1151328948"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-022-06402-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-022-06402-6", 
      "https://app.dimensions.ai/details/publication/pub.1151328948"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_918.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-022-06402-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06402-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06402-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06402-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06402-6'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      60 URIs      45 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-022-06402-6 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N20e1d5b249ec4da49f0149cbab708167
6 schema:citation sg:pub.10.1007/bf01303701
7 sg:pub.10.1007/bf01339455
8 sg:pub.10.1007/s10948-016-3666-0
9 sg:pub.10.1038/121580a0
10 sg:pub.10.1038/s41586-019-1496-5
11 schema:datePublished 2022-09-26
12 schema:datePublishedReg 2022-09-26
13 schema:description Superconducting nickelates in thin film perovskite structures, designed to be isostructural with the Cu(II) cuprates, have been discovered recently by Zhou et al. (Appl. Mater. Interfaces 10, 1463-1467, 1) and Li et al. (Nature 572, 624-627, 2) The strategies of both groups, to make nickelates as similar to the cuprates as possible by using planar NiO2 superlattice structures, proved successful. Ni(I) and Ni(III) are superconducting in superlattices, although TC is lower than in most Cu(II) cuprates. Here we find that a “3-oxidation states rule” applies to nickelate superlattices based on Ni(I) and Ni(III). It is predicted that the oxides of Ni(II), Cu(I), and Cu(III) cannot superconduct, because of violation of the 3-rule. This rule is derived here, along with other rules where the number of interacting oxidation states is decisive for the conduction properties of the metal ion. The Mott model is replaced by a free energy model.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N4fb8b78bde98469eac810b12aaef7a8a
17 Nd56c1ace7efd421fa35e048ab5082c40
18 sg:journal.1053198
19 schema:keywords Li et al
20 Mott model
21 Tc
22 Zhou et al
23 al
24 conduction properties
25 conductivity properties
26 cuprates
27 energy model
28 et al
29 free energy model
30 group
31 ions
32 metal ions
33 model
34 nickelates
35 number
36 oxidation state
37 oxide
38 perovskite nickelates
39 perovskite structure
40 properties
41 rules
42 state
43 strategies
44 structure
45 superlattice structure
46 superlattices
47 violation
48 schema:name Conductivity Properties of Perovskite Nickelates and Cuprates Depend on the Oxidation States of the Metal Ions
49 schema:pagination 3101-3107
50 schema:productId N070b6b9038df44bb839dba7438f08151
51 Nfd3198cebb3f4cceb5dddcf9ad00c13b
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1151328948
53 https://doi.org/10.1007/s10948-022-06402-6
54 schema:sdDatePublished 2022-11-24T21:09
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N9b34eae6f76741ab8f66c54ef6f009a1
57 schema:url https://doi.org/10.1007/s10948-022-06402-6
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N070b6b9038df44bb839dba7438f08151 schema:name dimensions_id
62 schema:value pub.1151328948
63 rdf:type schema:PropertyValue
64 N20e1d5b249ec4da49f0149cbab708167 rdf:first Nb91907d1df3c40b9bf9263691884884c
65 rdf:rest rdf:nil
66 N4fb8b78bde98469eac810b12aaef7a8a schema:volumeNumber 35
67 rdf:type schema:PublicationVolume
68 N9b34eae6f76741ab8f66c54ef6f009a1 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nb91907d1df3c40b9bf9263691884884c schema:affiliation grid-institutes:grid.5371.0
71 schema:familyName Larsson
72 schema:givenName Sven
73 rdf:type schema:Person
74 Nd56c1ace7efd421fa35e048ab5082c40 schema:issueNumber 11
75 rdf:type schema:PublicationIssue
76 Nfd3198cebb3f4cceb5dddcf9ad00c13b schema:name doi
77 schema:value 10.1007/s10948-022-06402-6
78 rdf:type schema:PropertyValue
79 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
80 schema:name Physical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
83 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
86 schema:name Condensed Matter Physics
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
89 schema:name Quantum Physics
90 rdf:type schema:DefinedTerm
91 sg:journal.1053198 schema:issn 1557-1939
92 1557-1947
93 schema:name Journal of Superconductivity and Novel Magnetism
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:pub.10.1007/bf01303701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036381635
97 https://doi.org/10.1007/bf01303701
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01339455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039883179
100 https://doi.org/10.1007/bf01339455
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10948-016-3666-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045640798
103 https://doi.org/10.1007/s10948-016-3666-0
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/121580a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005815770
106 https://doi.org/10.1038/121580a0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/s41586-019-1496-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120632299
109 https://doi.org/10.1038/s41586-019-1496-5
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.5371.0 schema:alternateName Department of Physical Chemistry, Chalmers University of Technology, SE-41296, Göteborg, Sweden
112 schema:name Department of Physical Chemistry, Chalmers University of Technology, SE-41296, Göteborg, Sweden
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...