First-principles Investigations on the Magnetic, Electronic, and Optical Properties of Honeycomb-Kagome-Structured Fe2O3 Monolayer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-09-22

AUTHORS

Hongji Wang, Juntao Yang, Qiang Yu, Yongchen Xiong, Haiming Huang, Shijun Luo

ABSTRACT

Two-dimensional materials with a novel honeycomb-kagome structure have got a variety of attentions owing to their dramatic properties. In the present work, a first-principles investigation on the electronic, magnetic, and optical properties of honeycomb-kagome-structured Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} monolayer has been performed based on density function theory. The Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} monolayer was found to be a Néel type antiferromagnetic semiconductor with an indirect band gap of 2.12 eV estimated by Perdew-Burke-Ernzerhof exchange-correlation functional potentials with U=5.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U=5.0$$\end{document} eV. A near-room critical temperature of 270 K was estimated by Monte Carlo simulations. The absorption spectrum exhibits a towering and fingerprint peak in a narrow ultraviolet range caused by the electron transitions between the flat valence bands and flat conduction bands. The electronic and optical properties of the Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} monolayer are robust when deposited on a substrate built by MgPS3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} layers by a physical adsorption. Our findings have an insight of the novel properties and highlight the potential in photoelectric application of the honeycomb-kagome-structured monolayers. More... »

PAGES

3353-3362

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-022-06398-z

DOI

http://dx.doi.org/10.1007/s10948-022-06398-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1151224384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.443568.8", 
          "name": [
            "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hongji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.443568.8", 
          "name": [
            "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Juntao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.443568.8", 
          "name": [
            "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Qiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.443568.8", 
          "name": [
            "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Yongchen", 
        "id": "sg:person.013451065763.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013451065763.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.443568.8", 
          "name": [
            "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Haiming", 
        "id": "sg:person.010353666611.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353666611.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.443568.8", 
          "name": [
            "School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Shijun", 
        "id": "sg:person.015562070461.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015562070461.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/natrevmats.2016.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052297927", 
          "https://doi.org/10.1038/natrevmats.2016.52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014928846", 
          "https://doi.org/10.1038/nature02817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep29221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021409171", 
          "https://doi.org/10.1038/srep29221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039604838", 
          "https://doi.org/10.1038/nnano.2015.340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032956475", 
          "https://doi.org/10.1038/nnano.2014.35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41565-018-0134-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103817425", 
          "https://doi.org/10.1038/s41565-018-0134-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022224835", 
          "https://doi.org/10.1038/nnano.2014.207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2017.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085993311", 
          "https://doi.org/10.1038/natrevmats.2017.33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-016-0001-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085379182", 
          "https://doi.org/10.1038/s41598-016-0001-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41699-019-0100-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113646779", 
          "https://doi.org/10.1038/s41699-019-0100-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015803020", 
          "https://doi.org/10.1038/nnano.2008.268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039895496", 
          "https://doi.org/10.1038/ncomms2451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040814583", 
          "https://doi.org/10.1038/nnano.2012.217"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-22", 
    "datePublishedReg": "2022-09-22", 
    "description": "Two-dimensional materials with a novel honeycomb-kagome structure have got a variety of attentions owing to their dramatic properties. In the present work, a first-principles investigation on the electronic, magnetic, and optical properties of honeycomb-kagome-structured Fe2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2}$$\\end{document}O3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{3}$$\\end{document} monolayer has been performed based on density function theory. The Fe2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2}$$\\end{document}O3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{3}$$\\end{document} monolayer was found to be a N\u00e9el type antiferromagnetic semiconductor with an indirect band gap of 2.12 eV estimated by Perdew-Burke-Ernzerhof exchange-correlation functional potentials with U=5.0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$U=5.0$$\\end{document} eV. A near-room critical temperature of 270 K was estimated by Monte Carlo simulations. The absorption spectrum exhibits a towering and fingerprint peak in a narrow ultraviolet range caused by the electron transitions between the flat valence bands and flat conduction bands. The electronic and optical properties of the Fe2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{2}$$\\end{document}O3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{3}$$\\end{document} monolayer are robust when deposited on a substrate built by MgPS3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{3}$$\\end{document} layers by a physical adsorption. Our findings have an insight of the novel properties and highlight the potential in photoelectric application of the honeycomb-kagome-structured monolayers.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-022-06398-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "optical properties", 
      "first-principles investigation", 
      "indirect band gap", 
      "flat conduction band", 
      "flat valence bands", 
      "two-dimensional materials", 
      "antiferromagnetic semiconductor", 
      "ultraviolet range", 
      "electron transitions", 
      "band gap", 
      "density function theory", 
      "valence band", 
      "conduction band", 
      "photoelectric applications", 
      "Perdew-Burke", 
      "absorption spectra", 
      "structured monolayers", 
      "Monte Carlo simulations", 
      "critical temperature", 
      "monolayers", 
      "novel properties", 
      "Carlo simulations", 
      "function theory", 
      "dramatic properties", 
      "band", 
      "semiconductors", 
      "eV", 
      "properties", 
      "magnetic", 
      "spectra", 
      "electronics", 
      "present work", 
      "transition", 
      "peak", 
      "gap", 
      "substrate", 
      "layer", 
      "temperature", 
      "simulations", 
      "theory", 
      "potential", 
      "structure", 
      "investigation", 
      "range", 
      "materials", 
      "applications", 
      "fingerprint peaks", 
      "physical adsorption", 
      "work", 
      "towering", 
      "adsorption", 
      "insights", 
      "variety", 
      "attention", 
      "functional potential", 
      "findings", 
      "variety of attention"
    ], 
    "name": "First-principles Investigations on the Magnetic, Electronic, and Optical Properties of Honeycomb-Kagome-Structured Fe2O3 Monolayer", 
    "pagination": "3353-3362", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1151224384"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-022-06398-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-022-06398-z", 
      "https://app.dimensions.ai/details/publication/pub.1151224384"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_940.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-022-06398-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06398-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06398-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06398-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06398-z'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      97 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-022-06398-z schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N469046d64ca5451381ddb5a076c4baa4
6 schema:citation sg:pub.10.1038/natrevmats.2016.52
7 sg:pub.10.1038/natrevmats.2017.33
8 sg:pub.10.1038/nature02817
9 sg:pub.10.1038/nature04233
10 sg:pub.10.1038/ncomms2451
11 sg:pub.10.1038/nnano.2008.268
12 sg:pub.10.1038/nnano.2012.217
13 sg:pub.10.1038/nnano.2014.207
14 sg:pub.10.1038/nnano.2014.35
15 sg:pub.10.1038/nnano.2015.340
16 sg:pub.10.1038/s41565-018-0134-y
17 sg:pub.10.1038/s41598-016-0001-8
18 sg:pub.10.1038/s41699-019-0100-z
19 sg:pub.10.1038/srep29221
20 schema:datePublished 2022-09-22
21 schema:datePublishedReg 2022-09-22
22 schema:description Two-dimensional materials with a novel honeycomb-kagome structure have got a variety of attentions owing to their dramatic properties. In the present work, a first-principles investigation on the electronic, magnetic, and optical properties of honeycomb-kagome-structured Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} monolayer has been performed based on density function theory. The Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} monolayer was found to be a Néel type antiferromagnetic semiconductor with an indirect band gap of 2.12 eV estimated by Perdew-Burke-Ernzerhof exchange-correlation functional potentials with U=5.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U=5.0$$\end{document} eV. A near-room critical temperature of 270 K was estimated by Monte Carlo simulations. The absorption spectrum exhibits a towering and fingerprint peak in a narrow ultraviolet range caused by the electron transitions between the flat valence bands and flat conduction bands. The electronic and optical properties of the Fe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} monolayer are robust when deposited on a substrate built by MgPS3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} layers by a physical adsorption. Our findings have an insight of the novel properties and highlight the potential in photoelectric application of the honeycomb-kagome-structured monolayers.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N7af6bf59fe324e1591f0ddc0d9601c01
26 Necdcafad5925443f87133d8f2a234689
27 sg:journal.1053198
28 schema:keywords Carlo simulations
29 Monte Carlo simulations
30 Perdew-Burke
31 absorption spectra
32 adsorption
33 antiferromagnetic semiconductor
34 applications
35 attention
36 band
37 band gap
38 conduction band
39 critical temperature
40 density function theory
41 dramatic properties
42 eV
43 electron transitions
44 electronics
45 findings
46 fingerprint peaks
47 first-principles investigation
48 flat conduction band
49 flat valence bands
50 function theory
51 functional potential
52 gap
53 indirect band gap
54 insights
55 investigation
56 layer
57 magnetic
58 materials
59 monolayers
60 novel properties
61 optical properties
62 peak
63 photoelectric applications
64 physical adsorption
65 potential
66 present work
67 properties
68 range
69 semiconductors
70 simulations
71 spectra
72 structure
73 structured monolayers
74 substrate
75 temperature
76 theory
77 towering
78 transition
79 two-dimensional materials
80 ultraviolet range
81 valence band
82 variety
83 variety of attention
84 work
85 schema:name First-principles Investigations on the Magnetic, Electronic, and Optical Properties of Honeycomb-Kagome-Structured Fe2O3 Monolayer
86 schema:pagination 3353-3362
87 schema:productId N4929f6f7661f41f2abbb8ced639cb880
88 N679622ac794c45a3947d12177f409358
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1151224384
90 https://doi.org/10.1007/s10948-022-06398-z
91 schema:sdDatePublished 2022-12-01T06:44
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N07d808b42ce44925a7a654868e6b670a
94 schema:url https://doi.org/10.1007/s10948-022-06398-z
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N0120b56804444768aad0e45a404c07a9 schema:affiliation grid-institutes:grid.443568.8
99 schema:familyName Wang
100 schema:givenName Hongji
101 rdf:type schema:Person
102 N07d808b42ce44925a7a654868e6b670a schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N0f20cf890f8244dd94012bd290a22173 rdf:first Ne9d035b994db4fc288f39c6f2765b06f
105 rdf:rest Ncc698e67f97a45ddbe14c883d20a111f
106 N2bff49d0977f43b58d137665601a8225 rdf:first sg:person.010353666611.79
107 rdf:rest N7b703b89325d42dcae0687531180d3a7
108 N469046d64ca5451381ddb5a076c4baa4 rdf:first N0120b56804444768aad0e45a404c07a9
109 rdf:rest N0f20cf890f8244dd94012bd290a22173
110 N4929f6f7661f41f2abbb8ced639cb880 schema:name doi
111 schema:value 10.1007/s10948-022-06398-z
112 rdf:type schema:PropertyValue
113 N679622ac794c45a3947d12177f409358 schema:name dimensions_id
114 schema:value pub.1151224384
115 rdf:type schema:PropertyValue
116 N7af6bf59fe324e1591f0ddc0d9601c01 schema:volumeNumber 35
117 rdf:type schema:PublicationVolume
118 N7b703b89325d42dcae0687531180d3a7 rdf:first sg:person.015562070461.05
119 rdf:rest rdf:nil
120 N8762e261eab54b4ab4ba809090a13820 rdf:first sg:person.013451065763.03
121 rdf:rest N2bff49d0977f43b58d137665601a8225
122 Nc7c5df14e46b4b179082f373bea655cf schema:affiliation grid-institutes:grid.443568.8
123 schema:familyName Yu
124 schema:givenName Qiang
125 rdf:type schema:Person
126 Ncc698e67f97a45ddbe14c883d20a111f rdf:first Nc7c5df14e46b4b179082f373bea655cf
127 rdf:rest N8762e261eab54b4ab4ba809090a13820
128 Ne9d035b994db4fc288f39c6f2765b06f schema:affiliation grid-institutes:grid.443568.8
129 schema:familyName Yang
130 schema:givenName Juntao
131 rdf:type schema:Person
132 Necdcafad5925443f87133d8f2a234689 schema:issueNumber 11
133 rdf:type schema:PublicationIssue
134 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
135 schema:name Physical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
138 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
141 schema:name Condensed Matter Physics
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
144 schema:name Quantum Physics
145 rdf:type schema:DefinedTerm
146 sg:journal.1053198 schema:issn 1557-1939
147 1557-1947
148 schema:name Journal of Superconductivity and Novel Magnetism
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.010353666611.79 schema:affiliation grid-institutes:grid.443568.8
152 schema:familyName Huang
153 schema:givenName Haiming
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353666611.79
155 rdf:type schema:Person
156 sg:person.013451065763.03 schema:affiliation grid-institutes:grid.443568.8
157 schema:familyName Xiong
158 schema:givenName Yongchen
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013451065763.03
160 rdf:type schema:Person
161 sg:person.015562070461.05 schema:affiliation grid-institutes:grid.443568.8
162 schema:familyName Luo
163 schema:givenName Shijun
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015562070461.05
165 rdf:type schema:Person
166 sg:pub.10.1038/natrevmats.2016.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052297927
167 https://doi.org/10.1038/natrevmats.2016.52
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/natrevmats.2017.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085993311
170 https://doi.org/10.1038/natrevmats.2017.33
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nature02817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014928846
173 https://doi.org/10.1038/nature02817
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
176 https://doi.org/10.1038/nature04233
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ncomms2451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039895496
179 https://doi.org/10.1038/ncomms2451
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nnano.2008.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803020
182 https://doi.org/10.1038/nnano.2008.268
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nnano.2012.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040814583
185 https://doi.org/10.1038/nnano.2012.217
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nnano.2014.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022224835
188 https://doi.org/10.1038/nnano.2014.207
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nnano.2014.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032956475
191 https://doi.org/10.1038/nnano.2014.35
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nnano.2015.340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039604838
194 https://doi.org/10.1038/nnano.2015.340
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/s41565-018-0134-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1103817425
197 https://doi.org/10.1038/s41565-018-0134-y
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/s41598-016-0001-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085379182
200 https://doi.org/10.1038/s41598-016-0001-8
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/s41699-019-0100-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1113646779
203 https://doi.org/10.1038/s41699-019-0100-z
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/srep29221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021409171
206 https://doi.org/10.1038/srep29221
207 rdf:type schema:CreativeWork
208 grid-institutes:grid.443568.8 schema:alternateName School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People’s Republic of China
209 schema:name School of Science, Hubei University of Automotive Technology (HUAT), 167 Checheng West Road, 442002, Shiyan City, Hubei, People’s Republic of China
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...