Microstructure and Critical Current Density of Bi-2212 Single- and Multi-filamentary Wires with Overpressure Heat Treatment Processing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-09-06

AUTHORS

L. H. Jin, X. Y. Xu, J. Q. Feng, G. Q. Liu, G. F. Jiao, S. N. Zhang, Q. B. Hao, C. S. Li, P. X. Zhang

ABSTRACT

Bi2Sr2CaCu2Ox (Bi-2212) single-filamentary and multi-filamentary wires were fabricated by powder in tube (PIT) process and sintered under the over pressure heat treatment (OPHT) process. The thermal behavior, microstructure, phase composition, and superconducting properties of wires were characterized by thermal gravimetric analysis, scanning electron microscopy, X-ray diffraction, and four-probe method, respectively. The inclined grain microstructure and randomly orientated grains were observed directly in single-filamentary wire. The performance of Bi-2212 mono-filamentary wire was extremely lowered than that of multi-filamentary wire, which could be ascribed to poor microstructure and texture. The inhomogeneous melting behavior of single-filamentary wire was responsible to the poor microstructure and the randomly orientated grains. Furthermore, high engineering critical current density (Je) of 1224 A/mm2 and critical current density (Jc) of 4896 A/mm2 were obtained in 666-filament Bi-2212 wire with good grain orientation and microstructure. It revealed that the grain orientation might be a major current-limiting factor. Therefore, the multi-filamentary architecture with good texture was critical for the improvement of performance Bi-2212 wires during OPHT process. More... »

PAGES

3127-3133

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-022-06388-1

DOI

http://dx.doi.org/10.1007/s10948-022-06388-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1150793917


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China", 
          "id": "http://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "L. H.", 
        "id": "sg:person.014446644155.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014446644155.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China", 
          "id": "http://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "X. Y.", 
        "id": "sg:person.016630620305.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630620305.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China", 
          "id": "http://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "J. Q.", 
        "id": "sg:person.011110033521.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110033521.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China", 
          "id": "http://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "G. Q.", 
        "id": "sg:person.013006345204.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013006345204.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China", 
          "id": "http://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiao", 
        "givenName": "G. F.", 
        "id": "sg:person.011440353331.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011440353331.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China", 
          "id": "http://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "S. N.", 
        "id": "sg:person.016043100470.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043100470.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China", 
          "id": "http://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hao", 
        "givenName": "Q. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China", 
          "id": "http://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "C. S.", 
        "id": "sg:person.016362517145.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362517145.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Western Superconducting Technologies Co. Ltd, 710018, Xi\u2019an, Shaanxi, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi\u2019an, Shaanxi, China", 
            "Western Superconducting Technologies Co. Ltd, 710018, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "P. X.", 
        "id": "sg:person.013570276106.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570276106.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040651649", 
          "https://doi.org/10.1038/nmat3887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039033796", 
          "https://doi.org/10.1038/srep08285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-019-46629-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1118018359", 
          "https://doi.org/10.1038/s41598-019-46629-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-09-06", 
    "datePublishedReg": "2022-09-06", 
    "description": "Bi2Sr2CaCu2Ox (Bi-2212) single-filamentary and multi-filamentary wires were fabricated by powder in tube (PIT) process and sintered under the over pressure heat treatment (OPHT) process. The thermal behavior, microstructure, phase composition, and superconducting properties of wires were characterized by thermal gravimetric analysis, scanning electron microscopy, X-ray diffraction, and four-probe method, respectively. The inclined grain microstructure and randomly orientated grains were observed directly in single-filamentary wire. The performance of Bi-2212 mono-filamentary wire was extremely lowered than that of multi-filamentary wire, which could be ascribed to poor microstructure and texture. The inhomogeneous melting behavior of single-filamentary wire was responsible to the poor microstructure and the randomly orientated grains. Furthermore, high engineering critical current density (Je) of 1224 A/mm2 and critical current density (Jc) of 4896 A/mm2 were obtained in 666-filament Bi-2212 wire with good grain orientation and microstructure. It revealed that the grain orientation might be a major current-limiting factor. Therefore, the multi-filamentary architecture with good texture was critical for the improvement of performance Bi-2212 wires during OPHT process.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-022-06388-1", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8280745", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8934623", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "keywords": [
      "multi-filamentary wires", 
      "critical current density", 
      "current density", 
      "poor microstructure", 
      "high engineering critical current density", 
      "grain orientation", 
      "engineering critical current density", 
      "performance of Bi", 
      "heat treatment process", 
      "heat treatment processing", 
      "properties of wires", 
      "current-limiting factors", 
      "four-probe method", 
      "better grain orientation", 
      "tube process", 
      "thermal gravimetric analysis", 
      "grain microstructure", 
      "treatment processing", 
      "microstructure", 
      "phase composition", 
      "X-ray diffraction", 
      "treatment process", 
      "thermal behavior", 
      "gravimetric analysis", 
      "wire", 
      "electron microscopy", 
      "good texture", 
      "melting behavior", 
      "mm2", 
      "density", 
      "grains", 
      "Bi", 
      "powder", 
      "texture", 
      "Bi2Sr2CaCu2Ox", 
      "process", 
      "behavior", 
      "diffraction", 
      "orientation", 
      "microscopy", 
      "performance", 
      "properties", 
      "processing", 
      "method", 
      "composition", 
      "architecture", 
      "improvement", 
      "Single", 
      "analysis", 
      "factors"
    ], 
    "name": "Microstructure and Critical Current Density of Bi-2212 Single- and Multi-filamentary Wires with Overpressure Heat Treatment Processing", 
    "pagination": "3127-3133", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1150793917"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-022-06388-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-022-06388-1", 
      "https://app.dimensions.ai/details/publication/pub.1150793917"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_940.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-022-06388-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06388-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06388-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06388-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-022-06388-1'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      79 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-022-06388-1 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author Nc009f0cc4a244d1d8070b98911b9f30a
6 schema:citation sg:pub.10.1038/nmat3887
7 sg:pub.10.1038/s41598-019-46629-3
8 sg:pub.10.1038/srep08285
9 schema:datePublished 2022-09-06
10 schema:datePublishedReg 2022-09-06
11 schema:description Bi2Sr2CaCu2Ox (Bi-2212) single-filamentary and multi-filamentary wires were fabricated by powder in tube (PIT) process and sintered under the over pressure heat treatment (OPHT) process. The thermal behavior, microstructure, phase composition, and superconducting properties of wires were characterized by thermal gravimetric analysis, scanning electron microscopy, X-ray diffraction, and four-probe method, respectively. The inclined grain microstructure and randomly orientated grains were observed directly in single-filamentary wire. The performance of Bi-2212 mono-filamentary wire was extremely lowered than that of multi-filamentary wire, which could be ascribed to poor microstructure and texture. The inhomogeneous melting behavior of single-filamentary wire was responsible to the poor microstructure and the randomly orientated grains. Furthermore, high engineering critical current density (Je) of 1224 A/mm2 and critical current density (Jc) of 4896 A/mm2 were obtained in 666-filament Bi-2212 wire with good grain orientation and microstructure. It revealed that the grain orientation might be a major current-limiting factor. Therefore, the multi-filamentary architecture with good texture was critical for the improvement of performance Bi-2212 wires during OPHT process.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N168a766660f047a1b1d9b12b4ba02087
15 Nf94790f1c9c44b0e800c5a59f973d475
16 sg:journal.1053198
17 schema:keywords Bi
18 Bi2Sr2CaCu2Ox
19 Single
20 X-ray diffraction
21 analysis
22 architecture
23 behavior
24 better grain orientation
25 composition
26 critical current density
27 current density
28 current-limiting factors
29 density
30 diffraction
31 electron microscopy
32 engineering critical current density
33 factors
34 four-probe method
35 good texture
36 grain microstructure
37 grain orientation
38 grains
39 gravimetric analysis
40 heat treatment process
41 heat treatment processing
42 high engineering critical current density
43 improvement
44 melting behavior
45 method
46 microscopy
47 microstructure
48 mm2
49 multi-filamentary wires
50 orientation
51 performance
52 performance of Bi
53 phase composition
54 poor microstructure
55 powder
56 process
57 processing
58 properties
59 properties of wires
60 texture
61 thermal behavior
62 thermal gravimetric analysis
63 treatment process
64 treatment processing
65 tube process
66 wire
67 schema:name Microstructure and Critical Current Density of Bi-2212 Single- and Multi-filamentary Wires with Overpressure Heat Treatment Processing
68 schema:pagination 3127-3133
69 schema:productId N1e078d5c90ea481ea1581f14f31ed8e9
70 Nb326671fde044ecaa86afff1f7e0ba17
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1150793917
72 https://doi.org/10.1007/s10948-022-06388-1
73 schema:sdDatePublished 2022-12-01T06:44
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N8979cf7893a64a289ade9f053ca00de4
76 schema:url https://doi.org/10.1007/s10948-022-06388-1
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N168a766660f047a1b1d9b12b4ba02087 schema:volumeNumber 35
81 rdf:type schema:PublicationVolume
82 N18673170a8da4f3a9b967ba34d5a63b8 rdf:first sg:person.013570276106.17
83 rdf:rest rdf:nil
84 N1e078d5c90ea481ea1581f14f31ed8e9 schema:name doi
85 schema:value 10.1007/s10948-022-06388-1
86 rdf:type schema:PropertyValue
87 N6df668fa0ab447198bae8ead4f792a29 schema:affiliation grid-institutes:grid.464401.3
88 schema:familyName Hao
89 schema:givenName Q. B.
90 rdf:type schema:Person
91 N738bb345d20b44f9857fc45d2eebc24e rdf:first sg:person.011440353331.30
92 rdf:rest N7f2c8f56ceec46459412967957c5ce29
93 N7f2c8f56ceec46459412967957c5ce29 rdf:first sg:person.016043100470.96
94 rdf:rest N8ad2d584c5d14f70ab7bb0781cfe7ec7
95 N85d80862e352430aa389d99f47b3299f rdf:first sg:person.016362517145.73
96 rdf:rest N18673170a8da4f3a9b967ba34d5a63b8
97 N8979cf7893a64a289ade9f053ca00de4 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N8ad2d584c5d14f70ab7bb0781cfe7ec7 rdf:first N6df668fa0ab447198bae8ead4f792a29
100 rdf:rest N85d80862e352430aa389d99f47b3299f
101 Nace7c133b86b41b68d590523bae4d45b rdf:first sg:person.013006345204.75
102 rdf:rest N738bb345d20b44f9857fc45d2eebc24e
103 Nb326671fde044ecaa86afff1f7e0ba17 schema:name dimensions_id
104 schema:value pub.1150793917
105 rdf:type schema:PropertyValue
106 Nc009f0cc4a244d1d8070b98911b9f30a rdf:first sg:person.014446644155.88
107 rdf:rest Ne8bc2d7ccfb94f1c892c0923925212a1
108 Nd451d85c5c414eb7a08683679cff4f26 rdf:first sg:person.011110033521.51
109 rdf:rest Nace7c133b86b41b68d590523bae4d45b
110 Ne8bc2d7ccfb94f1c892c0923925212a1 rdf:first sg:person.016630620305.20
111 rdf:rest Nd451d85c5c414eb7a08683679cff4f26
112 Nf94790f1c9c44b0e800c5a59f973d475 schema:issueNumber 11
113 rdf:type schema:PublicationIssue
114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
118 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
121 schema:name Condensed Matter Physics
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
124 schema:name Quantum Physics
125 rdf:type schema:DefinedTerm
126 sg:grant.8280745 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-022-06388-1
127 rdf:type schema:MonetaryGrant
128 sg:grant.8934623 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-022-06388-1
129 rdf:type schema:MonetaryGrant
130 sg:journal.1053198 schema:issn 1557-1939
131 1557-1947
132 schema:name Journal of Superconductivity and Novel Magnetism
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.011110033521.51 schema:affiliation grid-institutes:grid.464401.3
136 schema:familyName Feng
137 schema:givenName J. Q.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011110033521.51
139 rdf:type schema:Person
140 sg:person.011440353331.30 schema:affiliation grid-institutes:grid.464401.3
141 schema:familyName Jiao
142 schema:givenName G. F.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011440353331.30
144 rdf:type schema:Person
145 sg:person.013006345204.75 schema:affiliation grid-institutes:grid.464401.3
146 schema:familyName Liu
147 schema:givenName G. Q.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013006345204.75
149 rdf:type schema:Person
150 sg:person.013570276106.17 schema:affiliation grid-institutes:None
151 schema:familyName Zhang
152 schema:givenName P. X.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013570276106.17
154 rdf:type schema:Person
155 sg:person.014446644155.88 schema:affiliation grid-institutes:grid.464401.3
156 schema:familyName Jin
157 schema:givenName L. H.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014446644155.88
159 rdf:type schema:Person
160 sg:person.016043100470.96 schema:affiliation grid-institutes:grid.464401.3
161 schema:familyName Zhang
162 schema:givenName S. N.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016043100470.96
164 rdf:type schema:Person
165 sg:person.016362517145.73 schema:affiliation grid-institutes:grid.464401.3
166 schema:familyName Li
167 schema:givenName C. S.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362517145.73
169 rdf:type schema:Person
170 sg:person.016630620305.20 schema:affiliation grid-institutes:grid.464401.3
171 schema:familyName Xu
172 schema:givenName X. Y.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630620305.20
174 rdf:type schema:Person
175 sg:pub.10.1038/nmat3887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040651649
176 https://doi.org/10.1038/nmat3887
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/s41598-019-46629-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118018359
179 https://doi.org/10.1038/s41598-019-46629-3
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/srep08285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039033796
182 https://doi.org/10.1038/srep08285
183 rdf:type schema:CreativeWork
184 grid-institutes:None schema:alternateName Western Superconducting Technologies Co. Ltd, 710018, Xi’an, Shaanxi, China
185 schema:name Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi’an, Shaanxi, China
186 Western Superconducting Technologies Co. Ltd, 710018, Xi’an, Shaanxi, China
187 rdf:type schema:Organization
188 grid-institutes:grid.464401.3 schema:alternateName Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi’an, Shaanxi, China
189 schema:name Superconducting Materials Research Center, Northwest Institute for Nonferrous Metal Research, 710016, Xi’an, Shaanxi, China
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...