Influence of Packing Atmosphere on the Microstructures and Transport Properties of Bi-2223/AgAu Tapes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-05

AUTHORS

Xiaobo Ma, Shengnan Zhang, Zeming Yu, Guoqing Liu, Chengshan Li, Jinshan Li, Pingxiang Zhang

ABSTRACT

Oxygen partial pressure was the key factor to tune the phase evolution mechanism of Bi-2223 system. In order to investigate the influence of packing atmosphere on the phase formation rate of Bi-2223, microstructures‚ and the current capacity of final tapes‚ 37-filamentary Bi-2223/AgAu tapes were fabricated by powder-in-tube (PIT) process, and the powder packing process operated in the glove box under different atmosphere of pure O2‚ air, and N2–7.5%O2, with the oxygen partial pressure of 100%‚ 25%, and 7.5%, respectively. With different packing atmosphere, the phase formation rate of Bi-2223 increased obviously during the first heat treatment process (HT1). While, based on the same HT1 process, the maximum Bi-2223 phase content was obtained in the tapes with packing atmosphere of N2–7.5%O2‚ which should be attributed to the suitable Bi-2223 content and distribution. Due to the improvement of superconducting phase content and better texture structure, the critical current density increased with decreasing oxygen partial pressure of packing atmosphere and the maximum value of 19.9 kA/cm2 was reached. Moreover‚ the in-field current capacities of these Bi-2223/AgAu tapes have also been enhanced with low oxygen partial pressure in packing atmosphere, attributed to the improvements of intergrain connectivity. More... »

PAGES

1-6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-019-5008-5

DOI

http://dx.doi.org/10.1007/s10948-019-5008-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111934902


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 710072, Xi\u2019an, China", 
            "Northwest Institute for Nonferrous Metal Research (NIN), 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Xiaobo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Northwest Institute for Nonferrous Metal Research (NIN), 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shengnan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Northwest Institute for Nonferrous Metal Research (NIN), 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Zeming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Northwest Institute for Nonferrous Metal Research (NIN), 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Guoqing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "Northwest Institute for Nonferrous Metal Research (NIN), 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Chengshan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 710072, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jinshan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwest Institute For Non-Ferrous Metal Research", 
          "id": "https://www.grid.ac/institutes/grid.464401.3", 
          "name": [
            "State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 710072, Xi\u2019an, China", 
            "Northwest Institute for Nonferrous Metal Research (NIN), 710016, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Pingxiang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physc.2005.03.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004711038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.1997.0198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005081254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(96)00320-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007991397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0964-1807(94)90008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017572697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0964-1807(94)90008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017572697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-014-2588-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018372509", 
          "https://doi.org/10.1007/s10948-014-2588-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2005.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021351777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(03)01157-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022950976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(03)01157-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022950976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2003.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023835023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2003.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023835023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2011.05.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029710368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/19/11/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033281487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(00)01639-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034502809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/8/11/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044421850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1994.tb04598.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045814636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.305574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061111002"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-05", 
    "datePublishedReg": "2019-02-05", 
    "description": "Oxygen partial pressure was the key factor to tune the phase evolution mechanism of Bi-2223 system. In order to investigate the influence of packing atmosphere on the phase formation rate of Bi-2223, microstructures\u201a and the current capacity of final tapes\u201a 37-filamentary Bi-2223/AgAu tapes were fabricated by powder-in-tube (PIT) process, and the powder packing process operated in the glove box under different atmosphere of pure O2\u201a air, and N2\u20137.5%O2, with the oxygen partial pressure of 100%\u201a 25%, and 7.5%, respectively. With different packing atmosphere, the phase formation rate of Bi-2223 increased obviously during the first heat treatment process (HT1). While, based on the same HT1 process, the maximum Bi-2223 phase content was obtained in the tapes with packing atmosphere of N2\u20137.5%O2\u201a which should be attributed to the suitable Bi-2223 content and distribution. Due to the improvement of superconducting phase content and better texture structure, the critical current density increased with decreasing oxygen partial pressure of packing atmosphere and the maximum value of 19.9 kA/cm2 was reached. Moreover\u201a the in-field current capacities of these Bi-2223/AgAu tapes have also been enhanced with low oxygen partial pressure in packing atmosphere, attributed to the improvements of intergrain connectivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10948-019-5008-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "type": "Periodical"
      }
    ], 
    "name": "Influence of Packing Atmosphere on the Microstructures and Transport Properties of Bi-2223/AgAu Tapes", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f6ab7c409caaeecaebc199cb975cd1d3a5ef9f771205c0efdaf60fb9e47aa0b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-019-5008-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111934902"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-019-5008-5", 
      "https://app.dimensions.ai/details/publication/pub.1111934902"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105433_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10948-019-5008-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-019-5008-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-019-5008-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-019-5008-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-019-5008-5'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      39 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-019-5008-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na2afcb73340246078424db572ea3ab3e
4 schema:citation sg:pub.10.1007/s10948-014-2588-y
5 https://doi.org/10.1016/0921-4534(96)00320-6
6 https://doi.org/10.1016/0964-1807(94)90008-6
7 https://doi.org/10.1016/j.matlet.2005.04.007
8 https://doi.org/10.1016/j.physc.2003.08.001
9 https://doi.org/10.1016/j.physc.2005.03.044
10 https://doi.org/10.1016/j.physc.2011.05.132
11 https://doi.org/10.1016/s0921-4534(00)01639-7
12 https://doi.org/10.1016/s0921-4534(03)01157-2
13 https://doi.org/10.1088/0953-2048/19/11/004
14 https://doi.org/10.1088/0953-2048/8/11/008
15 https://doi.org/10.1103/physrevlett.58.908
16 https://doi.org/10.1109/20.305574
17 https://doi.org/10.1111/j.1151-2916.1994.tb04598.x
18 https://doi.org/10.1557/jmr.1997.0198
19 schema:datePublished 2019-02-05
20 schema:datePublishedReg 2019-02-05
21 schema:description Oxygen partial pressure was the key factor to tune the phase evolution mechanism of Bi-2223 system. In order to investigate the influence of packing atmosphere on the phase formation rate of Bi-2223, microstructures‚ and the current capacity of final tapes‚ 37-filamentary Bi-2223/AgAu tapes were fabricated by powder-in-tube (PIT) process, and the powder packing process operated in the glove box under different atmosphere of pure O2‚ air, and N2–7.5%O2, with the oxygen partial pressure of 100%‚ 25%, and 7.5%, respectively. With different packing atmosphere, the phase formation rate of Bi-2223 increased obviously during the first heat treatment process (HT1). While, based on the same HT1 process, the maximum Bi-2223 phase content was obtained in the tapes with packing atmosphere of N2–7.5%O2‚ which should be attributed to the suitable Bi-2223 content and distribution. Due to the improvement of superconducting phase content and better texture structure, the critical current density increased with decreasing oxygen partial pressure of packing atmosphere and the maximum value of 19.9 kA/cm2 was reached. Moreover‚ the in-field current capacities of these Bi-2223/AgAu tapes have also been enhanced with low oxygen partial pressure in packing atmosphere, attributed to the improvements of intergrain connectivity.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf sg:journal.1053198
26 schema:name Influence of Packing Atmosphere on the Microstructures and Transport Properties of Bi-2223/AgAu Tapes
27 schema:pagination 1-6
28 schema:productId N110044f0484f4778abe6807261a8c9ad
29 N56d5571296884c40ac58bb25fd4f610b
30 N9c9fe6904b0647b9bc06fd22fc0f5bac
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111934902
32 https://doi.org/10.1007/s10948-019-5008-5
33 schema:sdDatePublished 2019-04-11T09:02
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N50e34c4b5d854f92901181272d2f205c
36 schema:url https://link.springer.com/10.1007%2Fs10948-019-5008-5
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N093f0a9ae30b48f8936c94568cee7453 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
41 schema:familyName Zhang
42 schema:givenName Pingxiang
43 rdf:type schema:Person
44 N0cea0b16d3974b7bb0f25eb9049d1ea0 rdf:first N093f0a9ae30b48f8936c94568cee7453
45 rdf:rest rdf:nil
46 N110044f0484f4778abe6807261a8c9ad schema:name readcube_id
47 schema:value f6ab7c409caaeecaebc199cb975cd1d3a5ef9f771205c0efdaf60fb9e47aa0b4
48 rdf:type schema:PropertyValue
49 N112f182d192b49a280b9274d97e6d0ce schema:affiliation https://www.grid.ac/institutes/grid.440588.5
50 schema:familyName Li
51 schema:givenName Jinshan
52 rdf:type schema:Person
53 N172964c5555d4b3990f881b2e4fe078c rdf:first N90d3975c301d4e8fbaf1f88a1cbcfd78
54 rdf:rest Nb2a762cf78024b68a1109815329280e2
55 N50e34c4b5d854f92901181272d2f205c schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N56d5571296884c40ac58bb25fd4f610b schema:name dimensions_id
58 schema:value pub.1111934902
59 rdf:type schema:PropertyValue
60 N6188f67e6d12424dada40a3ed5f86afd schema:affiliation https://www.grid.ac/institutes/grid.464401.3
61 schema:familyName Li
62 schema:givenName Chengshan
63 rdf:type schema:Person
64 N65d5faddb4cc4b72ba7cb5d765b07cfc rdf:first Nef56f706953242acab2b1d45a536ab81
65 rdf:rest N172964c5555d4b3990f881b2e4fe078c
66 N67e34c6974df4b6980456f6214d40531 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
67 schema:familyName Liu
68 schema:givenName Guoqing
69 rdf:type schema:Person
70 N90128abf173344b893c16897521df676 rdf:first N112f182d192b49a280b9274d97e6d0ce
71 rdf:rest N0cea0b16d3974b7bb0f25eb9049d1ea0
72 N90d3975c301d4e8fbaf1f88a1cbcfd78 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
73 schema:familyName Yu
74 schema:givenName Zeming
75 rdf:type schema:Person
76 N91ba77a11b124d5f883f63e4250fe043 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
77 schema:familyName Ma
78 schema:givenName Xiaobo
79 rdf:type schema:Person
80 N9c9fe6904b0647b9bc06fd22fc0f5bac schema:name doi
81 schema:value 10.1007/s10948-019-5008-5
82 rdf:type schema:PropertyValue
83 Na2afcb73340246078424db572ea3ab3e rdf:first N91ba77a11b124d5f883f63e4250fe043
84 rdf:rest N65d5faddb4cc4b72ba7cb5d765b07cfc
85 Nb2a762cf78024b68a1109815329280e2 rdf:first N67e34c6974df4b6980456f6214d40531
86 rdf:rest Nfd32666956284647b9bb2475e04318fe
87 Nef56f706953242acab2b1d45a536ab81 schema:affiliation https://www.grid.ac/institutes/grid.464401.3
88 schema:familyName Zhang
89 schema:givenName Shengnan
90 rdf:type schema:Person
91 Nfd32666956284647b9bb2475e04318fe rdf:first N6188f67e6d12424dada40a3ed5f86afd
92 rdf:rest N90128abf173344b893c16897521df676
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
97 schema:name Materials Engineering
98 rdf:type schema:DefinedTerm
99 sg:journal.1053198 schema:issn 1557-1939
100 1557-1947
101 schema:name Journal of Superconductivity and Novel Magnetism
102 rdf:type schema:Periodical
103 sg:pub.10.1007/s10948-014-2588-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018372509
104 https://doi.org/10.1007/s10948-014-2588-y
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0921-4534(96)00320-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007991397
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0964-1807(94)90008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017572697
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.matlet.2005.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021351777
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.physc.2003.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023835023
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.physc.2005.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004711038
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.physc.2011.05.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029710368
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0921-4534(00)01639-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034502809
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0921-4534(03)01157-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022950976
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0953-2048/19/11/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033281487
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/0953-2048/8/11/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044421850
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.58.908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795429
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/20.305574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061111002
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1111/j.1151-2916.1994.tb04598.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045814636
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1557/jmr.1997.0198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005081254
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.440588.5 schema:alternateName Northwestern Polytechnical University
135 schema:name State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 710072, Xi’an, China
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.464401.3 schema:alternateName Northwest Institute For Non-Ferrous Metal Research
138 schema:name Northwest Institute for Nonferrous Metal Research (NIN), 710016, Xi’an, China
139 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, 710072, Xi’an, China
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...