Study of Effect of Bended Graphene on Its Magnetoresistance and Spin Filtration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Anil Kumar Singh, Sudhanshu Choudhary, Shweta Meena

ABSTRACT

Density functional theory (DFT) is used to investigate the spin-dependent quantum transport through bended graphene. Bending results in reduced bandgap in graphene and affects the spin transport by increasing current in parallel configuration (PC) resulting in an increase in magnetoresistance (MR). In antiparallel configuration (APC), bending limits the spin-down current, which results in higher magnetoresistance at all biases. In bended graphene, the magnetoresistance obtained is higher than the MR obtained in pristine and twisted graphene-based structure. High spin filtration for PC and APC is observed in the case of bended graphene as compared with pristine and twisted graphene. However, pristine graphene gives better spin filtration compared with twisted graphene at low voltages. More... »

PAGES

2753-2758

References to SciGraph publications

  • 2016-01. First-Principles Study of Spin Transport in CrO2–Graphene–CrO2 Magnetic Tunnel Junction in JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10948-017-4477-7

    DOI

    http://dx.doi.org/10.1007/s10948-017-4477-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100079916


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Technology Kurukshetra", 
              "id": "https://www.grid.ac/institutes/grid.444547.2", 
              "name": [
                "National Institute of Technology Kurukshetra, Kurukshetra, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Anil Kumar", 
            "id": "sg:person.010121237567.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121237567.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Technology Kurukshetra", 
              "id": "https://www.grid.ac/institutes/grid.444547.2", 
              "name": [
                "National Institute of Technology Kurukshetra, Kurukshetra, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choudhary", 
            "givenName": "Sudhanshu", 
            "id": "sg:person.010242266207.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010242266207.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Technology Kurukshetra", 
              "id": "https://www.grid.ac/institutes/grid.444547.2", 
              "name": [
                "National Institute of Technology Kurukshetra, Kurukshetra, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meena", 
            "givenName": "Shweta", 
            "id": "sg:person.011176217763.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176217763.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.physleta.2008.06.060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002394131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.165401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006910185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.165401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006910185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/14/11/302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013140491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10948-015-3223-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023779715", 
              "https://doi.org/10.1007/s10948-015-3223-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(92)91034-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024543028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(92)91034-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024543028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2011.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030737365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5772/16539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034136581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spmi.2014.06.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042075304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cplett.2012.07.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051270864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2798596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057867966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.245407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060600014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.245407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060600014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.184418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060643301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.184418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060643301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmag.2013.2245107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061685751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2013.2274902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061713043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7cp03342g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086027646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2017.08.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091307304"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "Density functional theory (DFT) is used to investigate the spin-dependent quantum transport through bended graphene. Bending results in reduced bandgap in graphene and affects the spin transport by increasing current in parallel configuration (PC) resulting in an increase in magnetoresistance (MR). In antiparallel configuration (APC), bending limits the spin-down current, which results in higher magnetoresistance at all biases. In bended graphene, the magnetoresistance obtained is higher than the MR obtained in pristine and twisted graphene-based structure. High spin filtration for PC and APC is observed in the case of bended graphene as compared with pristine and twisted graphene. However, pristine graphene gives better spin filtration compared with twisted graphene at low voltages.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10948-017-4477-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053198", 
            "issn": [
              "1557-1939", 
              "1557-1947"
            ], 
            "name": "Journal of Superconductivity and Novel Magnetism", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "Study of Effect of Bended Graphene on Its Magnetoresistance and Spin Filtration", 
        "pagination": "2753-2758", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f24f87987ceaa2b87192aa8ed8f8f93b84d1f6e69d25111d2a42c27846dabd06"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10948-017-4477-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100079916"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10948-017-4477-7", 
          "https://app.dimensions.ai/details/publication/pub.1100079916"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000603.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s10948-017-4477-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-017-4477-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-017-4477-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-017-4477-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-017-4477-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10948-017-4477-7 schema:about anzsrc-for:10
    2 anzsrc-for:1007
    3 schema:author N495d81b5056449eab1ac19db6130d98c
    4 schema:citation sg:pub.10.1007/s10948-015-3223-2
    5 https://doi.org/10.1016/0304-8853(92)91034-q
    6 https://doi.org/10.1016/j.cplett.2012.07.023
    7 https://doi.org/10.1016/j.physleta.2008.06.060
    8 https://doi.org/10.1016/j.physleta.2011.08.001
    9 https://doi.org/10.1016/j.physleta.2017.08.036
    10 https://doi.org/10.1016/j.spmi.2014.06.020
    11 https://doi.org/10.1039/c7cp03342g
    12 https://doi.org/10.1063/1.2798596
    13 https://doi.org/10.1088/0953-8984/14/11/302
    14 https://doi.org/10.1103/physrevb.63.245407
    15 https://doi.org/10.1103/physrevb.65.165401
    16 https://doi.org/10.1103/physrevb.89.184418
    17 https://doi.org/10.1109/tmag.2013.2245107
    18 https://doi.org/10.1109/tnano.2013.2274902
    19 https://doi.org/10.5772/16539
    20 schema:datePublished 2018-09
    21 schema:datePublishedReg 2018-09-01
    22 schema:description Density functional theory (DFT) is used to investigate the spin-dependent quantum transport through bended graphene. Bending results in reduced bandgap in graphene and affects the spin transport by increasing current in parallel configuration (PC) resulting in an increase in magnetoresistance (MR). In antiparallel configuration (APC), bending limits the spin-down current, which results in higher magnetoresistance at all biases. In bended graphene, the magnetoresistance obtained is higher than the MR obtained in pristine and twisted graphene-based structure. High spin filtration for PC and APC is observed in the case of bended graphene as compared with pristine and twisted graphene. However, pristine graphene gives better spin filtration compared with twisted graphene at low voltages.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N4ccdc3d72ec341e48966af3df82ecfea
    27 Nd7ba3847e7b64f7cb5fdfbe110768a05
    28 sg:journal.1053198
    29 schema:name Study of Effect of Bended Graphene on Its Magnetoresistance and Spin Filtration
    30 schema:pagination 2753-2758
    31 schema:productId N16b9066936584d178260ea1c44e2fa54
    32 N6692e5cbcfcc4c328bd4dea8688769cb
    33 N83e7e8a0bbb74c56b93c29a3015aad5b
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100079916
    35 https://doi.org/10.1007/s10948-017-4477-7
    36 schema:sdDatePublished 2019-04-10T16:55
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N4e668418c9d340c6a99431064fb6aaec
    39 schema:url http://link.springer.com/10.1007/s10948-017-4477-7
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N16b9066936584d178260ea1c44e2fa54 schema:name readcube_id
    44 schema:value f24f87987ceaa2b87192aa8ed8f8f93b84d1f6e69d25111d2a42c27846dabd06
    45 rdf:type schema:PropertyValue
    46 N3ce6f3a59705423ab3f9867b2b847d68 rdf:first sg:person.011176217763.98
    47 rdf:rest rdf:nil
    48 N495d81b5056449eab1ac19db6130d98c rdf:first sg:person.010121237567.12
    49 rdf:rest Ne56e45c7dc4048cab525abfb415909ba
    50 N4ccdc3d72ec341e48966af3df82ecfea schema:volumeNumber 31
    51 rdf:type schema:PublicationVolume
    52 N4e668418c9d340c6a99431064fb6aaec schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N6692e5cbcfcc4c328bd4dea8688769cb schema:name doi
    55 schema:value 10.1007/s10948-017-4477-7
    56 rdf:type schema:PropertyValue
    57 N83e7e8a0bbb74c56b93c29a3015aad5b schema:name dimensions_id
    58 schema:value pub.1100079916
    59 rdf:type schema:PropertyValue
    60 Nd7ba3847e7b64f7cb5fdfbe110768a05 schema:issueNumber 9
    61 rdf:type schema:PublicationIssue
    62 Ne56e45c7dc4048cab525abfb415909ba rdf:first sg:person.010242266207.41
    63 rdf:rest N3ce6f3a59705423ab3f9867b2b847d68
    64 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Technology
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Nanotechnology
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1053198 schema:issn 1557-1939
    71 1557-1947
    72 schema:name Journal of Superconductivity and Novel Magnetism
    73 rdf:type schema:Periodical
    74 sg:person.010121237567.12 schema:affiliation https://www.grid.ac/institutes/grid.444547.2
    75 schema:familyName Singh
    76 schema:givenName Anil Kumar
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121237567.12
    78 rdf:type schema:Person
    79 sg:person.010242266207.41 schema:affiliation https://www.grid.ac/institutes/grid.444547.2
    80 schema:familyName Choudhary
    81 schema:givenName Sudhanshu
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010242266207.41
    83 rdf:type schema:Person
    84 sg:person.011176217763.98 schema:affiliation https://www.grid.ac/institutes/grid.444547.2
    85 schema:familyName Meena
    86 schema:givenName Shweta
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176217763.98
    88 rdf:type schema:Person
    89 sg:pub.10.1007/s10948-015-3223-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023779715
    90 https://doi.org/10.1007/s10948-015-3223-2
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/0304-8853(92)91034-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1024543028
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/j.cplett.2012.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051270864
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/j.physleta.2008.06.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002394131
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/j.physleta.2011.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030737365
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/j.physleta.2017.08.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091307304
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/j.spmi.2014.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042075304
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1039/c7cp03342g schema:sameAs https://app.dimensions.ai/details/publication/pub.1086027646
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1063/1.2798596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057867966
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1088/0953-8984/14/11/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013140491
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1103/physrevb.63.245407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060600014
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1103/physrevb.65.165401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006910185
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrevb.89.184418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060643301
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/tmag.2013.2245107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061685751
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/tnano.2013.2274902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713043
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.5772/16539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034136581
    121 rdf:type schema:CreativeWork
    122 https://www.grid.ac/institutes/grid.444547.2 schema:alternateName National Institute of Technology Kurukshetra
    123 schema:name National Institute of Technology Kurukshetra, Kurukshetra, India
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...