Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07-20

AUTHORS

Martin Nikolo, John Singleton, Vivien S. Zapf, Jianyi Jiang, Jeremy D. Weiss, Eric E. Hellstrom

ABSTRACT

The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe0.92Co0.08)2As2 ( Tc = 23.2 K), Ba(Fe0.95Ni0.05)2As2 ( Tc = 20.4 K), and Ba(Fe0.94Ni0.06)2As2 ( Tc = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dc fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe0.92Co0.08)2As2 polycrystalline sample, showing a promise for liquid helium temperature applications. More... »

PAGES

2735-2742

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-016-3628-6

DOI

http://dx.doi.org/10.1007/s10948-016-3628-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019832183


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Saint Louis University, 63103, St. Louis, MO, USA", 
          "id": "http://www.grid.ac/institutes/grid.262962.b", 
          "name": [
            "Department of Physics, Saint Louis University, 63103, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolo", 
        "givenName": "Martin", 
        "id": "sg:person.011472757650.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA", 
          "id": "http://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "National High Magnetic Field Laboratory, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singleton", 
        "givenName": "John", 
        "id": "sg:person.01226557501.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226557501.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA", 
          "id": "http://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "National High Magnetic Field Laboratory, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zapf", 
        "givenName": "Vivien S.", 
        "id": "sg:person.01363473027.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363473027.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Jianyi", 
        "id": "sg:person.01154110202.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "Jeremy D.", 
        "id": "sg:person.01056616531.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellstrom", 
        "givenName": "Eric E.", 
        "id": "sg:person.0632002631.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10854-012-0763-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017482561", 
          "https://doi.org/10.1007/s10854-012-0763-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-4-431-68305-6_121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036054329", 
          "https://doi.org/10.1007/978-4-431-68305-6_121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-014-2550-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009622922", 
          "https://doi.org/10.1007/s10948-014-2550-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-016-3727-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031976021", 
          "https://doi.org/10.1007/s10948-016-3727-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-016-3726-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053162599", 
          "https://doi.org/10.1007/s10948-016-3726-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07-20", 
    "datePublishedReg": "2016-07-20", 
    "description": "The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe0.92Co0.08)2As2 ( Tc = 23.2 K), Ba(Fe0.95Ni0.05)2As2 ( Tc = 20.4 K), and Ba(Fe0.94Ni0.06)2As2 ( Tc = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dc fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe0.92Co0.08)2As2 polycrystalline sample, showing a promise for liquid helium temperature applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-016-3628-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3113501", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3484564", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3479346", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "magnetic field", 
      "high magnetic fields", 
      "magnetic field sweep rate", 
      "nonzero magnetic field", 
      "Oe/s", 
      "field sweep rate", 
      "irreversibility line", 
      "dH/dt", 
      "bulk superconductors", 
      "temperature phase diagram", 
      "magnetization hysteresis loops", 
      "dc field", 
      "combination of AC", 
      "mixed state", 
      "susceptibility measurements", 
      "critical field", 
      "resistivity measurements", 
      "high irreversibility field", 
      "polycrystalline samples", 
      "vortex dynamics", 
      "ac susceptibility", 
      "vortex pinning", 
      "superconductors", 
      "sweep rate", 
      "phase diagram", 
      "field", 
      "hysteresis loops", 
      "measurements", 
      "line measurements", 
      "irreversibility field", 
      "oscillator", 
      "magnetization", 
      "wide temperature", 
      "high temperature", 
      "temperature", 
      "data match", 
      "pinning", 
      "lines", 
      "materials", 
      "dynamics", 
      "state", 
      "diagram", 
      "new method", 
      "temperature applications", 
      "DC", 
      "lower values", 
      "Ni", 
      "technique", 
      "applications", 
      "AC", 
      "method", 
      "strength", 
      "loop", 
      "dt", 
      "samples", 
      "frame", 
      "promise", 
      "values", 
      "susceptibility", 
      "combination", 
      "match", 
      "rate", 
      "induction technique", 
      "time frame", 
      "impact", 
      "little impact", 
      "resistivity method", 
      "radio-frequency proximity detector oscillator", 
      "PDO", 
      "detector oscillator", 
      "radio-frequency proximity detector oscillator induction technique", 
      "proximity detector oscillator induction technique", 
      "detector oscillator induction technique", 
      "oscillator induction technique", 
      "dH/d t", 
      "d t", 
      "higher dH/dt", 
      "excellent data match", 
      "liquid helium temperature applications", 
      "helium temperature applications", 
      "Irreversibility Line Measurement", 
      "Co-Doped Iron Pnictide Bulk Superconductors", 
      "Iron Pnictide Bulk Superconductors", 
      "Pnictide Bulk Superconductors"
    ], 
    "name": "Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors", 
    "pagination": "2735-2742", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019832183"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-016-3628-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-016-3628-6", 
      "https://app.dimensions.ai/details/publication/pub.1019832183"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_703.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-016-3628-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-016-3628-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-016-3628-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-016-3628-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-016-3628-6'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      22 PREDICATES      114 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-016-3628-6 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Ncfe99c1140d64831ab9a8cf6b2de739c
4 schema:citation sg:pub.10.1007/978-4-431-68305-6_121
5 sg:pub.10.1007/s10854-012-0763-0
6 sg:pub.10.1007/s10948-014-2550-z
7 sg:pub.10.1007/s10948-016-3726-5
8 sg:pub.10.1007/s10948-016-3727-4
9 schema:datePublished 2016-07-20
10 schema:datePublishedReg 2016-07-20
11 schema:description The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe0.92Co0.08)2As2 ( Tc = 23.2 K), Ba(Fe0.95Ni0.05)2As2 ( Tc = 20.4 K), and Ba(Fe0.94Ni0.06)2As2 ( Tc = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dc fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe0.92Co0.08)2As2 polycrystalline sample, showing a promise for liquid helium temperature applications.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N583d97eda71c4e5d9cc178614f2cb705
16 Ne5f37b89c65940ebb9ecbf983b89280f
17 sg:journal.1053198
18 schema:keywords AC
19 Co-Doped Iron Pnictide Bulk Superconductors
20 DC
21 Iron Pnictide Bulk Superconductors
22 Irreversibility Line Measurement
23 Ni
24 Oe/s
25 PDO
26 Pnictide Bulk Superconductors
27 ac susceptibility
28 applications
29 bulk superconductors
30 combination
31 combination of AC
32 critical field
33 d t
34 dH/d t
35 dH/dt
36 data match
37 dc field
38 detector oscillator
39 detector oscillator induction technique
40 diagram
41 dt
42 dynamics
43 excellent data match
44 field
45 field sweep rate
46 frame
47 helium temperature applications
48 high irreversibility field
49 high magnetic fields
50 high temperature
51 higher dH/dt
52 hysteresis loops
53 impact
54 induction technique
55 irreversibility field
56 irreversibility line
57 line measurements
58 lines
59 liquid helium temperature applications
60 little impact
61 loop
62 lower values
63 magnetic field
64 magnetic field sweep rate
65 magnetization
66 magnetization hysteresis loops
67 match
68 materials
69 measurements
70 method
71 mixed state
72 new method
73 nonzero magnetic field
74 oscillator
75 oscillator induction technique
76 phase diagram
77 pinning
78 polycrystalline samples
79 promise
80 proximity detector oscillator induction technique
81 radio-frequency proximity detector oscillator
82 radio-frequency proximity detector oscillator induction technique
83 rate
84 resistivity measurements
85 resistivity method
86 samples
87 state
88 strength
89 superconductors
90 susceptibility
91 susceptibility measurements
92 sweep rate
93 technique
94 temperature
95 temperature applications
96 temperature phase diagram
97 time frame
98 values
99 vortex dynamics
100 vortex pinning
101 wide temperature
102 schema:name Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors
103 schema:pagination 2735-2742
104 schema:productId N6d9e9877f7fd45beb3f4aa505c7e18bd
105 N91182ef35616439c97a88ca45960f3ac
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019832183
107 https://doi.org/10.1007/s10948-016-3628-6
108 schema:sdDatePublished 2021-11-01T18:27
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N10da82f3bebe4512993e039da0486247
111 schema:url https://doi.org/10.1007/s10948-016-3628-6
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N10da82f3bebe4512993e039da0486247 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 N1a6222eee89e4809b21bf325647b07c8 rdf:first sg:person.0632002631.91
118 rdf:rest rdf:nil
119 N245ccec321ac4ed08d2816be697f95b7 rdf:first sg:person.01154110202.55
120 rdf:rest N2676d231661a45d985ac43aa2402b675
121 N2676d231661a45d985ac43aa2402b675 rdf:first sg:person.01056616531.73
122 rdf:rest N1a6222eee89e4809b21bf325647b07c8
123 N583d97eda71c4e5d9cc178614f2cb705 schema:volumeNumber 29
124 rdf:type schema:PublicationVolume
125 N6d9e9877f7fd45beb3f4aa505c7e18bd schema:name doi
126 schema:value 10.1007/s10948-016-3628-6
127 rdf:type schema:PropertyValue
128 N8263b2b8080b43b9bca4c85c736904ca rdf:first sg:person.01226557501.46
129 rdf:rest N911fc957b1e94adeb7109d92ba24abb8
130 N91182ef35616439c97a88ca45960f3ac schema:name dimensions_id
131 schema:value pub.1019832183
132 rdf:type schema:PropertyValue
133 N911fc957b1e94adeb7109d92ba24abb8 rdf:first sg:person.01363473027.58
134 rdf:rest N245ccec321ac4ed08d2816be697f95b7
135 Ncfe99c1140d64831ab9a8cf6b2de739c rdf:first sg:person.011472757650.45
136 rdf:rest N8263b2b8080b43b9bca4c85c736904ca
137 Ne5f37b89c65940ebb9ecbf983b89280f schema:issueNumber 11
138 rdf:type schema:PublicationIssue
139 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
140 schema:name Physical Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
143 schema:name Other Physical Sciences
144 rdf:type schema:DefinedTerm
145 sg:grant.3113501 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-016-3628-6
146 rdf:type schema:MonetaryGrant
147 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-016-3628-6
148 rdf:type schema:MonetaryGrant
149 sg:grant.3484564 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-016-3628-6
150 rdf:type schema:MonetaryGrant
151 sg:journal.1053198 schema:issn 1557-1939
152 1557-1947
153 schema:name Journal of Superconductivity and Novel Magnetism
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.01056616531.73 schema:affiliation grid-institutes:grid.481548.4
157 schema:familyName Weiss
158 schema:givenName Jeremy D.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73
160 rdf:type schema:Person
161 sg:person.011472757650.45 schema:affiliation grid-institutes:grid.262962.b
162 schema:familyName Nikolo
163 schema:givenName Martin
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45
165 rdf:type schema:Person
166 sg:person.01154110202.55 schema:affiliation grid-institutes:grid.481548.4
167 schema:familyName Jiang
168 schema:givenName Jianyi
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55
170 rdf:type schema:Person
171 sg:person.01226557501.46 schema:affiliation grid-institutes:grid.148313.c
172 schema:familyName Singleton
173 schema:givenName John
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226557501.46
175 rdf:type schema:Person
176 sg:person.01363473027.58 schema:affiliation grid-institutes:grid.148313.c
177 schema:familyName Zapf
178 schema:givenName Vivien S.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363473027.58
180 rdf:type schema:Person
181 sg:person.0632002631.91 schema:affiliation grid-institutes:grid.481548.4
182 schema:familyName Hellstrom
183 schema:givenName Eric E.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91
185 rdf:type schema:Person
186 sg:pub.10.1007/978-4-431-68305-6_121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036054329
187 https://doi.org/10.1007/978-4-431-68305-6_121
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s10854-012-0763-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017482561
190 https://doi.org/10.1007/s10854-012-0763-0
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s10948-014-2550-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009622922
193 https://doi.org/10.1007/s10948-014-2550-z
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s10948-016-3726-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053162599
196 https://doi.org/10.1007/s10948-016-3726-5
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s10948-016-3727-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031976021
199 https://doi.org/10.1007/s10948-016-3727-4
200 rdf:type schema:CreativeWork
201 grid-institutes:grid.148313.c schema:alternateName National High Magnetic Field Laboratory, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
202 schema:name National High Magnetic Field Laboratory, Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
203 rdf:type schema:Organization
204 grid-institutes:grid.262962.b schema:alternateName Department of Physics, Saint Louis University, 63103, St. Louis, MO, USA
205 schema:name Department of Physics, Saint Louis University, 63103, St. Louis, MO, USA
206 rdf:type schema:Organization
207 grid-institutes:grid.481548.4 schema:alternateName Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
208 schema:name Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...