Enhanced Superconductivity in Double-Doping Cu0.15TaSe2−xSx View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06-22

AUTHORS

Xiong Yao, Zhongheng Liu, Jifeng Shao, Lei Zhang, Shun Tan, Changjin Zhang, Yuheng Zhang

ABSTRACT

Superconducting CuxTaSe2(x=0.05, 0.15) and Cu0.15TaSe2−xSx(x=0, 0.5, 1, 1.5) single crystals have been systematically fabricated by a chemical vapor transport method. It is found that the double doping in TaSe2, i.e., the simultaneous intercalation of Cu and substitution of Se by S, can substantially enhance the superconducting transition temperature. Transport property measurements give evidence of the coexistence and competition of charge density wave state and superconductivity in CuxTaSe2 which provide meaningful information to understand the complex electronic states in this system. The parallel shift and the fan-shape broadening behaviors are observed in the superconducting transition curves under magnetic fields of Cu0.15TaSeS and TaSeS, respectively, indicating an increase of coherence length and suppression of superconducting fluctuation induced by copper intercalation. More... »

PAGES

2281-2285

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-016-3597-9

DOI

http://dx.doi.org/10.1007/s10948-016-3597-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022610717


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Xiong", 
        "id": "sg:person.013170124411.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013170124411.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhongheng", 
        "id": "sg:person.014133571153.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133571153.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Jifeng", 
        "id": "sg:person.010650260143.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650260143.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "id": "sg:person.015247643660.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247643660.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Shun", 
        "id": "sg:person.013122417516.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013122417516.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Changjin", 
        "id": "sg:person.0756465327.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756465327.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China", 
            "Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuheng", 
        "id": "sg:person.01117171420.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044562983", 
          "https://doi.org/10.1038/nphys360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044349122", 
          "https://doi.org/10.1038/nmat2318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049030714", 
          "https://doi.org/10.1038/ncomms7091"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06-22", 
    "datePublishedReg": "2016-06-22", 
    "description": "Superconducting CuxTaSe2(x=0.05, 0.15) and Cu0.15TaSe2\u2212xSx(x=0, 0.5, 1, 1.5) single crystals have been systematically fabricated by a chemical vapor transport method. It is found that the double doping in TaSe2, i.e., the simultaneous intercalation of Cu and substitution of Se by S, can substantially enhance the superconducting transition temperature. Transport property measurements give evidence of the coexistence and competition of charge density wave state and superconductivity in CuxTaSe2 which provide meaningful information to understand the complex electronic states in this system. The parallel shift and the fan-shape broadening behaviors are observed in the superconducting transition curves under magnetic fields of Cu0.15TaSeS and TaSeS, respectively, indicating an increase of coherence length and suppression of superconducting fluctuation induced by copper intercalation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-016-3597-9", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8380712", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "transport property measurements", 
      "vapor transport method", 
      "property measurements", 
      "double doping", 
      "chemical vapor transport method", 
      "enhanced superconductivity", 
      "transition temperature", 
      "transport method", 
      "substitution of Se", 
      "magnetic field", 
      "broadening behavior", 
      "single crystals", 
      "transition curve", 
      "simultaneous intercalation", 
      "doping", 
      "copper intercalation", 
      "intercalation", 
      "coherence length", 
      "temperature", 
      "wave state", 
      "superconductivity", 
      "charge density wave state", 
      "density wave state", 
      "Cu", 
      "measurements", 
      "behavior", 
      "field", 
      "fluctuations", 
      "system", 
      "TaSe2", 
      "method", 
      "crystals", 
      "curves", 
      "complex electronic states", 
      "length", 
      "meaningful information", 
      "state", 
      "increase", 
      "electronic states", 
      "Se", 
      "coexistence", 
      "shift", 
      "suppression", 
      "substitution", 
      "information", 
      "TAS", 
      "parallel shift", 
      "competition", 
      "evidence"
    ], 
    "name": "Enhanced Superconductivity in Double-Doping Cu0.15TaSe2\u2212xSx", 
    "pagination": "2281-2285", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022610717"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-016-3597-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-016-3597-9", 
      "https://app.dimensions.ai/details/publication/pub.1022610717"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_706.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-016-3597-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-016-3597-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-016-3597-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-016-3597-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-016-3597-9'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      76 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-016-3597-9 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N9d2431142abe475586bf0e175dacab1d
4 schema:citation sg:pub.10.1038/ncomms7091
5 sg:pub.10.1038/nmat2318
6 sg:pub.10.1038/nphys360
7 schema:datePublished 2016-06-22
8 schema:datePublishedReg 2016-06-22
9 schema:description Superconducting CuxTaSe2(x=0.05, 0.15) and Cu0.15TaSe2−xSx(x=0, 0.5, 1, 1.5) single crystals have been systematically fabricated by a chemical vapor transport method. It is found that the double doping in TaSe2, i.e., the simultaneous intercalation of Cu and substitution of Se by S, can substantially enhance the superconducting transition temperature. Transport property measurements give evidence of the coexistence and competition of charge density wave state and superconductivity in CuxTaSe2 which provide meaningful information to understand the complex electronic states in this system. The parallel shift and the fan-shape broadening behaviors are observed in the superconducting transition curves under magnetic fields of Cu0.15TaSeS and TaSeS, respectively, indicating an increase of coherence length and suppression of superconducting fluctuation induced by copper intercalation.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N9dceca6e1d674bfb80e4ff04e2400913
13 Na0ebb5849ab84db784f3590dfbd1fb75
14 sg:journal.1053198
15 schema:keywords Cu
16 Se
17 TAS
18 TaSe2
19 behavior
20 broadening behavior
21 charge density wave state
22 chemical vapor transport method
23 coexistence
24 coherence length
25 competition
26 complex electronic states
27 copper intercalation
28 crystals
29 curves
30 density wave state
31 doping
32 double doping
33 electronic states
34 enhanced superconductivity
35 evidence
36 field
37 fluctuations
38 increase
39 information
40 intercalation
41 length
42 magnetic field
43 meaningful information
44 measurements
45 method
46 parallel shift
47 property measurements
48 shift
49 simultaneous intercalation
50 single crystals
51 state
52 substitution
53 substitution of Se
54 superconductivity
55 suppression
56 system
57 temperature
58 transition curve
59 transition temperature
60 transport method
61 transport property measurements
62 vapor transport method
63 wave state
64 schema:name Enhanced Superconductivity in Double-Doping Cu0.15TaSe2−xSx
65 schema:pagination 2281-2285
66 schema:productId N12c344f7223b48039099fbdc3b2f1860
67 N4425bad744cb4aa5a247b2a374dbdc59
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022610717
69 https://doi.org/10.1007/s10948-016-3597-9
70 schema:sdDatePublished 2022-10-01T06:42
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N4097e5dc8ef84c0e8d2fdabb1586554a
73 schema:url https://doi.org/10.1007/s10948-016-3597-9
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N12c344f7223b48039099fbdc3b2f1860 schema:name doi
78 schema:value 10.1007/s10948-016-3597-9
79 rdf:type schema:PropertyValue
80 N1ddb86df952447a4a8e9379627ddb62c rdf:first sg:person.015247643660.97
81 rdf:rest N4eefd497317448519b49d06c24b15a42
82 N3e383ff5e3944a90ab09b7389d86b894 rdf:first sg:person.010650260143.37
83 rdf:rest N1ddb86df952447a4a8e9379627ddb62c
84 N4097e5dc8ef84c0e8d2fdabb1586554a schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N4425bad744cb4aa5a247b2a374dbdc59 schema:name dimensions_id
87 schema:value pub.1022610717
88 rdf:type schema:PropertyValue
89 N4eefd497317448519b49d06c24b15a42 rdf:first sg:person.013122417516.58
90 rdf:rest Neff8997c236342a3aac1fab7c13f2918
91 N9d2431142abe475586bf0e175dacab1d rdf:first sg:person.013170124411.88
92 rdf:rest Ndbea93722f86405db41b98d5aafd1ab1
93 N9dceca6e1d674bfb80e4ff04e2400913 schema:issueNumber 9
94 rdf:type schema:PublicationIssue
95 Na0ebb5849ab84db784f3590dfbd1fb75 schema:volumeNumber 29
96 rdf:type schema:PublicationVolume
97 Ndbea93722f86405db41b98d5aafd1ab1 rdf:first sg:person.014133571153.58
98 rdf:rest N3e383ff5e3944a90ab09b7389d86b894
99 Neff8997c236342a3aac1fab7c13f2918 rdf:first sg:person.0756465327.42
100 rdf:rest Nf7d6d88f295d486da07344eb0c80df71
101 Nf7d6d88f295d486da07344eb0c80df71 rdf:first sg:person.01117171420.13
102 rdf:rest rdf:nil
103 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
104 schema:name Physical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
107 schema:name Condensed Matter Physics
108 rdf:type schema:DefinedTerm
109 sg:grant.8380712 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-016-3597-9
110 rdf:type schema:MonetaryGrant
111 sg:journal.1053198 schema:issn 1557-1939
112 1557-1947
113 schema:name Journal of Superconductivity and Novel Magnetism
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.010650260143.37 schema:affiliation grid-institutes:grid.59053.3a
117 schema:familyName Shao
118 schema:givenName Jifeng
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650260143.37
120 rdf:type schema:Person
121 sg:person.01117171420.13 schema:affiliation grid-institutes:grid.59053.3a
122 schema:familyName Zhang
123 schema:givenName Yuheng
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13
125 rdf:type schema:Person
126 sg:person.013122417516.58 schema:affiliation grid-institutes:grid.59053.3a
127 schema:familyName Tan
128 schema:givenName Shun
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013122417516.58
130 rdf:type schema:Person
131 sg:person.013170124411.88 schema:affiliation grid-institutes:grid.59053.3a
132 schema:familyName Yao
133 schema:givenName Xiong
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013170124411.88
135 rdf:type schema:Person
136 sg:person.014133571153.58 schema:affiliation grid-institutes:grid.59053.3a
137 schema:familyName Liu
138 schema:givenName Zhongheng
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133571153.58
140 rdf:type schema:Person
141 sg:person.015247643660.97 schema:affiliation grid-institutes:grid.467854.c
142 schema:familyName Zhang
143 schema:givenName Lei
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247643660.97
145 rdf:type schema:Person
146 sg:person.0756465327.42 schema:affiliation grid-institutes:grid.59053.3a
147 schema:familyName Zhang
148 schema:givenName Changjin
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756465327.42
150 rdf:type schema:Person
151 sg:pub.10.1038/ncomms7091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049030714
152 https://doi.org/10.1038/ncomms7091
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nmat2318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044349122
155 https://doi.org/10.1038/nmat2318
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nphys360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044562983
158 https://doi.org/10.1038/nphys360
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.467854.c schema:alternateName High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People’s Republic of China
161 schema:name High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People’s Republic of China
162 rdf:type schema:Organization
163 grid-institutes:grid.59053.3a schema:alternateName Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People’s Republic of China
164 schema:name Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, People’s Republic of China
165 High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, 230026, Hefei, People’s Republic of China
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...