Photo-Induced Topological Superconductor in Silicene, Germanene, and Stanene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04

AUTHORS

Motohiko Ezawa

ABSTRACT

We investigate the emergence of topological superconductivity in honeycomb system such as silicene, germanene, and stanene. Photo-irradiation induces the Haldane term into the system. By introducing s-wave superconductivity by proximity coupling, the system becomes a topological superconductor. It is a photo-induced topological superconductor. We explicitly determine the topological phase diagram by deriving the four independent 2-band theory and determining the chern number. We also explicitly obtain wave functions of Majorana zero-energy bound states, which appear at the boundary of two distinct topological phases. We can arbitrarily control the position of Majorana fermion by moving the area of photo-irradiation. More... »

PAGES

1249-1253

References to SciGraph publications

  • 2013-12. Topological Phase Transition without Gap Closing in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10948-014-2900-x

    DOI

    http://dx.doi.org/10.1007/s10948-014-2900-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019363054


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ezawa", 
            "givenName": "Motohiko", 
            "id": "sg:person.07724251271.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07724251271.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevb.84.195430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002848385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.195430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002848385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-conmatphys-030212-184337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003810286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.184516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005436246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.184516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005436246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.195125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011668608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.195125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011668608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.87.155415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014013859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.87.155415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014013859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.076802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015731334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.076802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015731334"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.187001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019881673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.187001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019881673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.026603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022743328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.026603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022743328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.226801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026041336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.226801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026041336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.096407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026401354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.096407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026401354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(81)90044-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027376391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(81)90044-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027376391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.80.1083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028121061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.80.1083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028121061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/104/27006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030210964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030223311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030223311"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep02790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032275785", 
              "https://doi.org/10.1038/srep02790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/1063-7869/44/10s/s29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036504866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/14/3/033003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037773725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.235108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039780704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.84.235108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039780704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0268-1242/27/12/124003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043195422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/75/7/076501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043407441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.83.1057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045115933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.83.1057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045115933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797796"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04", 
        "datePublishedReg": "2015-04-01", 
        "description": "We investigate the emergence of topological superconductivity in honeycomb system such as silicene, germanene, and stanene. Photo-irradiation induces the Haldane term into the system. By introducing s-wave superconductivity by proximity coupling, the system becomes a topological superconductor. It is a photo-induced topological superconductor. We explicitly determine the topological phase diagram by deriving the four independent 2-band theory and determining the chern number. We also explicitly obtain wave functions of Majorana zero-energy bound states, which appear at the boundary of two distinct topological phases. We can arbitrarily control the position of Majorana fermion by moving the area of photo-irradiation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10948-014-2900-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6125548", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1053198", 
            "issn": [
              "1557-1939", 
              "1557-1947"
            ], 
            "name": "Journal of Superconductivity and Novel Magnetism", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Photo-Induced Topological Superconductor in Silicene, Germanene, and Stanene", 
        "pagination": "1249-1253", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5c42374fa689d68c5dbeabed90a68daf0a13807221431c6658c186be9c3be08f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10948-014-2900-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019363054"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10948-014-2900-x", 
          "https://app.dimensions.ai/details/publication/pub.1019363054"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10948-014-2900-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2900-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2900-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2900-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2900-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    130 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10948-014-2900-x schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N02e99e37afb6406da094e38f17d79723
    4 schema:citation sg:pub.10.1038/srep02790
    5 https://doi.org/10.1016/0550-3213(81)90044-4
    6 https://doi.org/10.1070/1063-7869/44/10s/s29
    7 https://doi.org/10.1088/0034-4885/75/7/076501
    8 https://doi.org/10.1088/0268-1242/27/12/124003
    9 https://doi.org/10.1088/1367-2630/14/3/033003
    10 https://doi.org/10.1103/physrevb.78.195125
    11 https://doi.org/10.1103/physrevb.82.184516
    12 https://doi.org/10.1103/physrevb.84.195430
    13 https://doi.org/10.1103/physrevb.84.235108
    14 https://doi.org/10.1103/physrevb.87.155415
    15 https://doi.org/10.1103/physrevlett.100.096407
    16 https://doi.org/10.1103/physrevlett.102.187001
    17 https://doi.org/10.1103/physrevlett.107.076802
    18 https://doi.org/10.1103/physrevlett.110.026603
    19 https://doi.org/10.1103/physrevlett.61.2015
    20 https://doi.org/10.1103/physrevlett.86.268
    21 https://doi.org/10.1103/physrevlett.95.226801
    22 https://doi.org/10.1103/revmodphys.80.1083
    23 https://doi.org/10.1103/revmodphys.83.1057
    24 https://doi.org/10.1146/annurev-conmatphys-030212-184337
    25 https://doi.org/10.1209/0295-5075/104/27006
    26 schema:datePublished 2015-04
    27 schema:datePublishedReg 2015-04-01
    28 schema:description We investigate the emergence of topological superconductivity in honeycomb system such as silicene, germanene, and stanene. Photo-irradiation induces the Haldane term into the system. By introducing s-wave superconductivity by proximity coupling, the system becomes a topological superconductor. It is a photo-induced topological superconductor. We explicitly determine the topological phase diagram by deriving the four independent 2-band theory and determining the chern number. We also explicitly obtain wave functions of Majorana zero-energy bound states, which appear at the boundary of two distinct topological phases. We can arbitrarily control the position of Majorana fermion by moving the area of photo-irradiation.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N56e6ce0365604935b4b94874ba0ace8c
    33 Ne4322f5e355645eb8a2ba0806a854b7c
    34 sg:journal.1053198
    35 schema:name Photo-Induced Topological Superconductor in Silicene, Germanene, and Stanene
    36 schema:pagination 1249-1253
    37 schema:productId N9abde85f37f74824beb10ffaed442e1e
    38 Nd43708aa18f04faca4beeb95a6a3400c
    39 Nd8e55da586634fd3a7ad7d1d18dc1820
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019363054
    41 https://doi.org/10.1007/s10948-014-2900-x
    42 schema:sdDatePublished 2019-04-10T18:20
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N2db434e2ee174edc9a91e169f40c3189
    45 schema:url http://link.springer.com/10.1007%2Fs10948-014-2900-x
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N02e99e37afb6406da094e38f17d79723 rdf:first sg:person.07724251271.76
    50 rdf:rest rdf:nil
    51 N2db434e2ee174edc9a91e169f40c3189 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N56e6ce0365604935b4b94874ba0ace8c schema:volumeNumber 28
    54 rdf:type schema:PublicationVolume
    55 N9abde85f37f74824beb10ffaed442e1e schema:name doi
    56 schema:value 10.1007/s10948-014-2900-x
    57 rdf:type schema:PropertyValue
    58 Nd43708aa18f04faca4beeb95a6a3400c schema:name dimensions_id
    59 schema:value pub.1019363054
    60 rdf:type schema:PropertyValue
    61 Nd8e55da586634fd3a7ad7d1d18dc1820 schema:name readcube_id
    62 schema:value 5c42374fa689d68c5dbeabed90a68daf0a13807221431c6658c186be9c3be08f
    63 rdf:type schema:PropertyValue
    64 Ne4322f5e355645eb8a2ba0806a854b7c schema:issueNumber 4
    65 rdf:type schema:PublicationIssue
    66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Engineering
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Materials Engineering
    71 rdf:type schema:DefinedTerm
    72 sg:grant.6125548 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2900-x
    73 rdf:type schema:MonetaryGrant
    74 sg:journal.1053198 schema:issn 1557-1939
    75 1557-1947
    76 schema:name Journal of Superconductivity and Novel Magnetism
    77 rdf:type schema:Periodical
    78 sg:person.07724251271.76 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    79 schema:familyName Ezawa
    80 schema:givenName Motohiko
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07724251271.76
    82 rdf:type schema:Person
    83 sg:pub.10.1038/srep02790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032275785
    84 https://doi.org/10.1038/srep02790
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/0550-3213(81)90044-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027376391
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1070/1063-7869/44/10s/s29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036504866
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1088/0034-4885/75/7/076501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043407441
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1088/0268-1242/27/12/124003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043195422
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1088/1367-2630/14/3/033003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037773725
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1103/physrevb.78.195125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011668608
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1103/physrevb.82.184516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005436246
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physrevb.84.195430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002848385
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrevb.84.235108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039780704
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1103/physrevb.87.155415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014013859
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1103/physrevlett.100.096407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026401354
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1103/physrevlett.102.187001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019881673
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1103/physrevlett.107.076802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015731334
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1103/physrevlett.110.026603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022743328
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrevlett.61.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797796
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1103/physrevlett.86.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030223311
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physrevlett.95.226801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026041336
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/revmodphys.80.1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028121061
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/revmodphys.83.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115933
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1146/annurev-conmatphys-030212-184337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003810286
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1209/0295-5075/104/27006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030210964
    127 rdf:type schema:CreativeWork
    128 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
    129 schema:name Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Tokyo, Japan
    130 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...