Ontology type: schema:ScholarlyArticle
2014-10-02
AUTHORSIgor Rudnev, Maxim Osipov, Alexey Podlivaev, Sergey Pokrovskiy, Alexey Menushenkov
ABSTRACTWe present a two-dimensional (2D) imaging of electric current flow in nanoscale range obtained for planar structures. Experiments were performed at current densities of 10 5–10 6 A/cm 2 for ∼1-##μ##m-wide current-carrying metallic stripe. The images were obtained by use of magnetic force microscopy (MFM) as a sensor to measure a magnetic response of current flow. The 2D current mapping was reconstructed from MFM phase images by numerical inversion of Biot-Savart law. By using such method, we obtained the parallel and perpendicular components of the current as well as module of total current with the spatial resolution better than 100 nm. We clearly observed the changes of X and Y components of current density related to changes in the cross-section or form of the structures. Developed magneto-transport techniques can be used for detection and control of the current flow in real nano-electronic devices for studying of defects of current paths in nano-stripes due to, for example, electromigration processes and in other applications. More... »
PAGES1081-1085
http://scigraph.springernature.com/pub.10.1007/s10948-014-2806-7
DOIhttp://dx.doi.org/10.1007/s10948-014-2806-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027880629
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.183446.c",
"name": [
"Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Rudnev",
"givenName": "Igor",
"id": "sg:person.07675241337.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675241337.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.183446.c",
"name": [
"Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Osipov",
"givenName": "Maxim",
"id": "sg:person.011702342033.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702342033.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.183446.c",
"name": [
"Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Podlivaev",
"givenName": "Alexey",
"id": "sg:person.010115474571.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010115474571.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.183446.c",
"name": [
"Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Pokrovskiy",
"givenName": "Sergey",
"id": "sg:person.010012157772.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010012157772.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.183446.c",
"name": [
"Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Menushenkov",
"givenName": "Alexey",
"id": "sg:person.014176112217.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014176112217.78"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10948-013-2417-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030762481",
"https://doi.org/10.1007/s10948-013-2417-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-10-02",
"datePublishedReg": "2014-10-02",
"description": "We present a two-dimensional (2D) imaging of electric current flow in nanoscale range obtained for planar structures. Experiments were performed at current densities of 10 5\u201310 6 A/cm 2 for \u223c1-##\u03bc##m-wide current-carrying metallic stripe. The images were obtained by use of magnetic force microscopy (MFM) as a sensor to measure a magnetic response of current flow. The 2D current mapping was reconstructed from MFM phase images by numerical inversion of Biot-Savart law. By using such method, we obtained the parallel and perpendicular components of the current as well as module of total current with the spatial resolution better than 100 nm. We clearly observed the changes of X and Y components of current density related to changes in the cross-section or form of the structures. Developed magneto-transport techniques can be used for detection and control of the current flow in real nano-electronic devices for studying of defects of current paths in nano-stripes due to, for example, electromigration processes and in other applications.",
"genre": "article",
"id": "sg:pub.10.1007/s10948-014-2806-7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1053198",
"issn": [
"1557-1939",
"1557-1947"
],
"name": "Journal of Superconductivity and Novel Magnetism",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "28"
}
],
"keywords": [
"magnetic force microscopy",
"electric current flow",
"Biot-Savart law",
"current flow",
"current density",
"nano-electronic devices",
"numerical inversion",
"force microscopy",
"metallic stripes",
"magnetic response",
"perpendicular component",
"nano-stripes",
"current mapping",
"such methods",
"electromigration process",
"current path",
"total current",
"nanoscale range",
"spatial resolution",
"flow",
"two-dimensional imaging",
"planar structure",
"current",
"phase images",
"microscopy",
"inversion",
"density",
"sensors",
"law",
"devices",
"structure",
"path",
"module",
"applications",
"stripes",
"components",
"images",
"technique",
"range",
"process",
"mapping",
"resolution",
"experiments",
"method",
"parallel",
"form",
"defects",
"use",
"detection",
"control",
"example",
"visualization",
"imaging",
"changes",
"response"
],
"name": "Visualization of Electric Current Flow by Use of Magnetic Force Microscopy",
"pagination": "1081-1085",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027880629"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10948-014-2806-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10948-014-2806-7",
"https://app.dimensions.ai/details/publication/pub.1027880629"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_645.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10948-014-2806-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2806-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2806-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2806-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2806-7'
This table displays all metadata directly associated to this object as RDF triples.
145 TRIPLES
22 PREDICATES
81 URIs
72 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10948-014-2806-7 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N5f6a6735a5574e67ac8865b14214e294 |
4 | ″ | schema:citation | sg:pub.10.1007/s10948-013-2417-8 |
5 | ″ | schema:datePublished | 2014-10-02 |
6 | ″ | schema:datePublishedReg | 2014-10-02 |
7 | ″ | schema:description | We present a two-dimensional (2D) imaging of electric current flow in nanoscale range obtained for planar structures. Experiments were performed at current densities of 10 5–10 6 A/cm 2 for ∼1-##μ##m-wide current-carrying metallic stripe. The images were obtained by use of magnetic force microscopy (MFM) as a sensor to measure a magnetic response of current flow. The 2D current mapping was reconstructed from MFM phase images by numerical inversion of Biot-Savart law. By using such method, we obtained the parallel and perpendicular components of the current as well as module of total current with the spatial resolution better than 100 nm. We clearly observed the changes of X and Y components of current density related to changes in the cross-section or form of the structures. Developed magneto-transport techniques can be used for detection and control of the current flow in real nano-electronic devices for studying of defects of current paths in nano-stripes due to, for example, electromigration processes and in other applications. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N2aad9a711109492682a2bcb4cec083db |
12 | ″ | ″ | N2cb22126da57437eabf9be624e2885e5 |
13 | ″ | ″ | sg:journal.1053198 |
14 | ″ | schema:keywords | Biot-Savart law |
15 | ″ | ″ | applications |
16 | ″ | ″ | changes |
17 | ″ | ″ | components |
18 | ″ | ″ | control |
19 | ″ | ″ | current |
20 | ″ | ″ | current density |
21 | ″ | ″ | current flow |
22 | ″ | ″ | current mapping |
23 | ″ | ″ | current path |
24 | ″ | ″ | defects |
25 | ″ | ″ | density |
26 | ″ | ″ | detection |
27 | ″ | ″ | devices |
28 | ″ | ″ | electric current flow |
29 | ″ | ″ | electromigration process |
30 | ″ | ″ | example |
31 | ″ | ″ | experiments |
32 | ″ | ″ | flow |
33 | ″ | ″ | force microscopy |
34 | ″ | ″ | form |
35 | ″ | ″ | images |
36 | ″ | ″ | imaging |
37 | ″ | ″ | inversion |
38 | ″ | ″ | law |
39 | ″ | ″ | magnetic force microscopy |
40 | ″ | ″ | magnetic response |
41 | ″ | ″ | mapping |
42 | ″ | ″ | metallic stripes |
43 | ″ | ″ | method |
44 | ″ | ″ | microscopy |
45 | ″ | ″ | module |
46 | ″ | ″ | nano-electronic devices |
47 | ″ | ″ | nano-stripes |
48 | ″ | ″ | nanoscale range |
49 | ″ | ″ | numerical inversion |
50 | ″ | ″ | parallel |
51 | ″ | ″ | path |
52 | ″ | ″ | perpendicular component |
53 | ″ | ″ | phase images |
54 | ″ | ″ | planar structure |
55 | ″ | ″ | process |
56 | ″ | ″ | range |
57 | ″ | ″ | resolution |
58 | ″ | ″ | response |
59 | ″ | ″ | sensors |
60 | ″ | ″ | spatial resolution |
61 | ″ | ″ | stripes |
62 | ″ | ″ | structure |
63 | ″ | ″ | such methods |
64 | ″ | ″ | technique |
65 | ″ | ″ | total current |
66 | ″ | ″ | two-dimensional imaging |
67 | ″ | ″ | use |
68 | ″ | ″ | visualization |
69 | ″ | schema:name | Visualization of Electric Current Flow by Use of Magnetic Force Microscopy |
70 | ″ | schema:pagination | 1081-1085 |
71 | ″ | schema:productId | N4d15d736b6b9471b87779cd5c26052f4 |
72 | ″ | ″ | N914f98efeed14b52abece2aed2d1d191 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027880629 |
74 | ″ | ″ | https://doi.org/10.1007/s10948-014-2806-7 |
75 | ″ | schema:sdDatePublished | 2022-05-20T07:30 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | N73bc5c376b2c433783d9b4bcaf65dec1 |
78 | ″ | schema:url | https://doi.org/10.1007/s10948-014-2806-7 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | articles |
81 | ″ | rdf:type | schema:ScholarlyArticle |
82 | N211da0a2ce51419e9506f6877ae2a353 | rdf:first | sg:person.010115474571.14 |
83 | ″ | rdf:rest | Nb7b598dbaef14c19b4c45facaeaa9c14 |
84 | N2aad9a711109492682a2bcb4cec083db | schema:volumeNumber | 28 |
85 | ″ | rdf:type | schema:PublicationVolume |
86 | N2cb22126da57437eabf9be624e2885e5 | schema:issueNumber | 3 |
87 | ″ | rdf:type | schema:PublicationIssue |
88 | N4d15d736b6b9471b87779cd5c26052f4 | schema:name | dimensions_id |
89 | ″ | schema:value | pub.1027880629 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | N58a7c94d9e5246d2a9d78596a5167aa5 | rdf:first | sg:person.014176112217.78 |
92 | ″ | rdf:rest | rdf:nil |
93 | N5f6a6735a5574e67ac8865b14214e294 | rdf:first | sg:person.07675241337.84 |
94 | ″ | rdf:rest | Nc65872f827474cf6904dcc26b4387b58 |
95 | N73bc5c376b2c433783d9b4bcaf65dec1 | schema:name | Springer Nature - SN SciGraph project |
96 | ″ | rdf:type | schema:Organization |
97 | N914f98efeed14b52abece2aed2d1d191 | schema:name | doi |
98 | ″ | schema:value | 10.1007/s10948-014-2806-7 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | Nb7b598dbaef14c19b4c45facaeaa9c14 | rdf:first | sg:person.010012157772.72 |
101 | ″ | rdf:rest | N58a7c94d9e5246d2a9d78596a5167aa5 |
102 | Nc65872f827474cf6904dcc26b4387b58 | rdf:first | sg:person.011702342033.40 |
103 | ″ | rdf:rest | N211da0a2ce51419e9506f6877ae2a353 |
104 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Physical Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Other Physical Sciences |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | sg:journal.1053198 | schema:issn | 1557-1939 |
111 | ″ | ″ | 1557-1947 |
112 | ″ | schema:name | Journal of Superconductivity and Novel Magnetism |
113 | ″ | schema:publisher | Springer Nature |
114 | ″ | rdf:type | schema:Periodical |
115 | sg:person.010012157772.72 | schema:affiliation | grid-institutes:grid.183446.c |
116 | ″ | schema:familyName | Pokrovskiy |
117 | ″ | schema:givenName | Sergey |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010012157772.72 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.010115474571.14 | schema:affiliation | grid-institutes:grid.183446.c |
121 | ″ | schema:familyName | Podlivaev |
122 | ″ | schema:givenName | Alexey |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010115474571.14 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.011702342033.40 | schema:affiliation | grid-institutes:grid.183446.c |
126 | ″ | schema:familyName | Osipov |
127 | ″ | schema:givenName | Maxim |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011702342033.40 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.014176112217.78 | schema:affiliation | grid-institutes:grid.183446.c |
131 | ″ | schema:familyName | Menushenkov |
132 | ″ | schema:givenName | Alexey |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014176112217.78 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.07675241337.84 | schema:affiliation | grid-institutes:grid.183446.c |
136 | ″ | schema:familyName | Rudnev |
137 | ″ | schema:givenName | Igor |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675241337.84 |
139 | ″ | rdf:type | schema:Person |
140 | sg:pub.10.1007/s10948-013-2417-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030762481 |
141 | ″ | ″ | https://doi.org/10.1007/s10948-013-2417-8 |
142 | ″ | rdf:type | schema:CreativeWork |
143 | grid-institutes:grid.183446.c | schema:alternateName | Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia |
144 | ″ | schema:name | Department of Solid State Physics and Nanosystems, National Research Nuclear University MEPHI, 115409, Moscow, Russia |
145 | ″ | rdf:type | schema:Organization |