Investigation of Magnetic Entropy Change and Griffiths-like Phase in La0.65Ca0.35MnO3 Nanocrystalline View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08-27

AUTHORS

Lisha Xu, Zhiyue Chen, Xiyuan Zhang, Yangguang Shi, Yan Zhu, Daning Shi, Lei Zhang, Li Pi, Yuheng Zhang, Jiyu Fan

ABSTRACT

In this paper, we reported a detailed study of magnetic properties and magnetic entropy change of La 0.65Ca0.35MnO3 nanocrystalline, which was prepared by using the sol–gel method. The structural analysis shows that the nanocrystalline sample crystalizes in orthorhombic perovskite structure and the average size is about 30 nm. Based on the measurements of magnetization, a larger effective magnetic moment was obtained and an obvious deviation of the inverse magnetic susceptibility was observed, indicating the presence of Griffiths-like phase in paramagnetic region. Around the temperature of paramagnetic–ferromagnetic phase transition, the magnetocaloric effect (as represented by the magnetic entropy change) was determined from isothermal magnetization and calculated with Maxwell relation. Compared with bulk polycrystalline, the obtained magnetic entropy change in nanocrystalline is small. This result clearly reveals that the decrease of the sample’s size to nanoscale is detrimental for the increase of magnetocaloric effect of magnetic materials. Besides the particle size and surface effect, the paramagnetic–ferromagnetic phase transition driven from first to second order should be a main reason for the small magnetocaloric effect in La 0.65Ca0.35MnO3 nanocrystalline. More... »

PAGES

2779-2786

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-014-2703-0

DOI

http://dx.doi.org/10.1007/s10948-014-2703-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035691585


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Lisha", 
        "id": "sg:person.012116233427.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116233427.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhiyue", 
        "id": "sg:person.013263367457.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013263367457.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiyuan", 
        "id": "sg:person.010125263775.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010125263775.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Yangguang", 
        "id": "sg:person.014367345751.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367345751.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yan", 
        "id": "sg:person.07774025227.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774025227.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Daning", 
        "id": "sg:person.01042650013.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042650013.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lei", 
        "id": "sg:person.015247643660.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247643660.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pi", 
        "givenName": "Li", 
        "id": "sg:person.01065252511.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252511.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.467854.c", 
          "name": [
            "High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuheng", 
        "id": "sg:person.01117171420.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Jiyu", 
        "id": "sg:person.011265215351.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265215351.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/415150a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022524944", 
          "https://doi.org/10.1038/415150a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005846542", 
          "https://doi.org/10.1038/nmat3463"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08-27", 
    "datePublishedReg": "2014-08-27", 
    "description": "In this paper, we reported a detailed study of magnetic properties and magnetic entropy change of La 0.65Ca0.35MnO3 nanocrystalline, which was prepared by using the sol\u2013gel method. The structural analysis shows that the nanocrystalline sample crystalizes in orthorhombic perovskite structure and the average size is about 30 nm. Based on the measurements of magnetization, a larger effective magnetic moment was obtained and an obvious deviation of the inverse magnetic susceptibility was observed, indicating the presence of Griffiths-like phase in paramagnetic region. Around the temperature of paramagnetic\u2013ferromagnetic phase transition, the magnetocaloric effect (as represented by the magnetic entropy change) was determined from isothermal magnetization and calculated with Maxwell relation. Compared with bulk polycrystalline, the obtained magnetic entropy change in nanocrystalline is small. This result clearly reveals that the decrease of the sample\u2019s size to nanoscale is detrimental for the increase of magnetocaloric effect of magnetic materials. Besides the particle size and surface effect, the paramagnetic\u2013ferromagnetic phase transition driven from first to second order should be a main reason for the small magnetocaloric effect in La 0.65Ca0.35MnO3 nanocrystalline.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-014-2703-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5010948", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8379446", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7010583", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6994632", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "magnetic entropy change", 
      "paramagnetic-ferromagnetic phase transition", 
      "Griffiths-like phase", 
      "magnetocaloric effect", 
      "small magnetocaloric effect", 
      "entropy change", 
      "inverse magnetic susceptibility", 
      "large effective magnetic moment", 
      "measurements of magnetization", 
      "phase transition", 
      "effective magnetic moment", 
      "isothermal magnetization", 
      "second order", 
      "magnetic moment", 
      "magnetic materials", 
      "Maxwell relation", 
      "magnetic properties", 
      "paramagnetic region", 
      "magnetic susceptibility", 
      "bulk polycrystalline", 
      "nanocrystalline samples", 
      "magnetization", 
      "surface effects", 
      "orthorhombic perovskite structure", 
      "sample size", 
      "polycrystalline", 
      "nanocrystalline", 
      "perovskite structure", 
      "transition", 
      "detailed study", 
      "moment", 
      "properties", 
      "size", 
      "structural analysis", 
      "nanoscale", 
      "deviation", 
      "obvious deviation", 
      "order", 
      "structure", 
      "phase", 
      "sol-gel method", 
      "measurements", 
      "temperature", 
      "results", 
      "average size", 
      "effect", 
      "relation", 
      "analysis", 
      "particle size", 
      "main reason", 
      "susceptibility", 
      "region", 
      "materials", 
      "investigation", 
      "presence", 
      "samples", 
      "changes", 
      "reasons", 
      "study", 
      "increase", 
      "decrease", 
      "method", 
      "paper"
    ], 
    "name": "Investigation of Magnetic Entropy Change and Griffiths-like Phase in La0.65Ca0.35MnO3 Nanocrystalline", 
    "pagination": "2779-2786", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035691585"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-014-2703-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-014-2703-0", 
      "https://app.dimensions.ai/details/publication/pub.1035691585"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_628.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-014-2703-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2703-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2703-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2703-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2703-0'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      22 PREDICATES      92 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-014-2703-0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N9b436133a63f4da389073cc569f0b05a
6 schema:citation sg:pub.10.1038/415150a
7 sg:pub.10.1038/nmat3463
8 schema:datePublished 2014-08-27
9 schema:datePublishedReg 2014-08-27
10 schema:description In this paper, we reported a detailed study of magnetic properties and magnetic entropy change of La 0.65Ca0.35MnO3 nanocrystalline, which was prepared by using the sol–gel method. The structural analysis shows that the nanocrystalline sample crystalizes in orthorhombic perovskite structure and the average size is about 30 nm. Based on the measurements of magnetization, a larger effective magnetic moment was obtained and an obvious deviation of the inverse magnetic susceptibility was observed, indicating the presence of Griffiths-like phase in paramagnetic region. Around the temperature of paramagnetic–ferromagnetic phase transition, the magnetocaloric effect (as represented by the magnetic entropy change) was determined from isothermal magnetization and calculated with Maxwell relation. Compared with bulk polycrystalline, the obtained magnetic entropy change in nanocrystalline is small. This result clearly reveals that the decrease of the sample’s size to nanoscale is detrimental for the increase of magnetocaloric effect of magnetic materials. Besides the particle size and surface effect, the paramagnetic–ferromagnetic phase transition driven from first to second order should be a main reason for the small magnetocaloric effect in La 0.65Ca0.35MnO3 nanocrystalline.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N0a52fd5674ca47288cbb4d5b7a23bae5
15 N85a8d0550d98483f84a979f3fcf6db76
16 sg:journal.1053198
17 schema:keywords Griffiths-like phase
18 Maxwell relation
19 analysis
20 average size
21 bulk polycrystalline
22 changes
23 decrease
24 detailed study
25 deviation
26 effect
27 effective magnetic moment
28 entropy change
29 increase
30 inverse magnetic susceptibility
31 investigation
32 isothermal magnetization
33 large effective magnetic moment
34 magnetic entropy change
35 magnetic materials
36 magnetic moment
37 magnetic properties
38 magnetic susceptibility
39 magnetization
40 magnetocaloric effect
41 main reason
42 materials
43 measurements
44 measurements of magnetization
45 method
46 moment
47 nanocrystalline
48 nanocrystalline samples
49 nanoscale
50 obvious deviation
51 order
52 orthorhombic perovskite structure
53 paper
54 paramagnetic region
55 paramagnetic-ferromagnetic phase transition
56 particle size
57 perovskite structure
58 phase
59 phase transition
60 polycrystalline
61 presence
62 properties
63 reasons
64 region
65 relation
66 results
67 sample size
68 samples
69 second order
70 size
71 small magnetocaloric effect
72 sol-gel method
73 structural analysis
74 structure
75 study
76 surface effects
77 susceptibility
78 temperature
79 transition
80 schema:name Investigation of Magnetic Entropy Change and Griffiths-like Phase in La0.65Ca0.35MnO3 Nanocrystalline
81 schema:pagination 2779-2786
82 schema:productId Nbab276ea92d849acb8ac76d3304119e8
83 Nbd1ddc8a9d79421a8306cac5560949ec
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035691585
85 https://doi.org/10.1007/s10948-014-2703-0
86 schema:sdDatePublished 2022-06-01T22:13
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Ne8c64cb4c3624e83b28207fba33c95a5
89 schema:url https://doi.org/10.1007/s10948-014-2703-0
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N039c871e0bd4441691b56220b33a4331 rdf:first sg:person.014367345751.46
94 rdf:rest N2278a48fdbf84a019658cb30fdd30d25
95 N0a52fd5674ca47288cbb4d5b7a23bae5 schema:issueNumber 12
96 rdf:type schema:PublicationIssue
97 N0e921c9646654ce4b46301a39b4b7bac rdf:first sg:person.01065252511.17
98 rdf:rest N486a92648b15466d82978bcc91fb0393
99 N2278a48fdbf84a019658cb30fdd30d25 rdf:first sg:person.07774025227.42
100 rdf:rest N3cc9ad05d10547b3a6afab1c60fea023
101 N330acf90568b48ff9c67c0212036c184 rdf:first sg:person.011265215351.18
102 rdf:rest rdf:nil
103 N3cc9ad05d10547b3a6afab1c60fea023 rdf:first sg:person.01042650013.62
104 rdf:rest Nc2d1832905fd48c093a5391a126dbfe3
105 N486a92648b15466d82978bcc91fb0393 rdf:first sg:person.01117171420.13
106 rdf:rest N330acf90568b48ff9c67c0212036c184
107 N85a8d0550d98483f84a979f3fcf6db76 schema:volumeNumber 27
108 rdf:type schema:PublicationVolume
109 N9b436133a63f4da389073cc569f0b05a rdf:first sg:person.012116233427.87
110 rdf:rest Nf6a6aaa81a0140a1b9ca9e977ce98a54
111 Nbab276ea92d849acb8ac76d3304119e8 schema:name doi
112 schema:value 10.1007/s10948-014-2703-0
113 rdf:type schema:PropertyValue
114 Nbd1ddc8a9d79421a8306cac5560949ec schema:name dimensions_id
115 schema:value pub.1035691585
116 rdf:type schema:PropertyValue
117 Nc2d1832905fd48c093a5391a126dbfe3 rdf:first sg:person.015247643660.97
118 rdf:rest N0e921c9646654ce4b46301a39b4b7bac
119 Nda90968fd8bb4b8cbe56bc65e02a2427 rdf:first sg:person.010125263775.00
120 rdf:rest N039c871e0bd4441691b56220b33a4331
121 Ne8c64cb4c3624e83b28207fba33c95a5 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Nf6a6aaa81a0140a1b9ca9e977ce98a54 rdf:first sg:person.013263367457.61
124 rdf:rest Nda90968fd8bb4b8cbe56bc65e02a2427
125 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
129 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
132 schema:name Condensed Matter Physics
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
135 schema:name Quantum Physics
136 rdf:type schema:DefinedTerm
137 sg:grant.5010948 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2703-0
138 rdf:type schema:MonetaryGrant
139 sg:grant.6994632 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2703-0
140 rdf:type schema:MonetaryGrant
141 sg:grant.7010583 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2703-0
142 rdf:type schema:MonetaryGrant
143 sg:grant.8379446 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2703-0
144 rdf:type schema:MonetaryGrant
145 sg:journal.1053198 schema:issn 1557-1939
146 1557-1947
147 schema:name Journal of Superconductivity and Novel Magnetism
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.010125263775.00 schema:affiliation grid-institutes:grid.64938.30
151 schema:familyName Zhang
152 schema:givenName Xiyuan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010125263775.00
154 rdf:type schema:Person
155 sg:person.01042650013.62 schema:affiliation grid-institutes:grid.64938.30
156 schema:familyName Shi
157 schema:givenName Daning
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042650013.62
159 rdf:type schema:Person
160 sg:person.01065252511.17 schema:affiliation grid-institutes:grid.467854.c
161 schema:familyName Pi
162 schema:givenName Li
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065252511.17
164 rdf:type schema:Person
165 sg:person.01117171420.13 schema:affiliation grid-institutes:grid.467854.c
166 schema:familyName Zhang
167 schema:givenName Yuheng
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117171420.13
169 rdf:type schema:Person
170 sg:person.011265215351.18 schema:affiliation grid-institutes:grid.64938.30
171 schema:familyName Fan
172 schema:givenName Jiyu
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011265215351.18
174 rdf:type schema:Person
175 sg:person.012116233427.87 schema:affiliation grid-institutes:grid.64938.30
176 schema:familyName Xu
177 schema:givenName Lisha
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116233427.87
179 rdf:type schema:Person
180 sg:person.013263367457.61 schema:affiliation grid-institutes:grid.64938.30
181 schema:familyName Chen
182 schema:givenName Zhiyue
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013263367457.61
184 rdf:type schema:Person
185 sg:person.014367345751.46 schema:affiliation grid-institutes:grid.64938.30
186 schema:familyName Shi
187 schema:givenName Yangguang
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014367345751.46
189 rdf:type schema:Person
190 sg:person.015247643660.97 schema:affiliation grid-institutes:grid.467854.c
191 schema:familyName Zhang
192 schema:givenName Lei
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247643660.97
194 rdf:type schema:Person
195 sg:person.07774025227.42 schema:affiliation grid-institutes:grid.64938.30
196 schema:familyName Zhu
197 schema:givenName Yan
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774025227.42
199 rdf:type schema:Person
200 sg:pub.10.1038/415150a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022524944
201 https://doi.org/10.1038/415150a
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nmat3463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005846542
204 https://doi.org/10.1038/nmat3463
205 rdf:type schema:CreativeWork
206 grid-institutes:grid.467854.c schema:alternateName High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China
207 schema:name High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, China
208 rdf:type schema:Organization
209 grid-institutes:grid.64938.30 schema:alternateName Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
210 schema:name Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...