Magneto-transport Properties and Thermally Activated Flux Flow in Ba(Fe0.91Co0.09)2As2 Superconductor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-06-17

AUTHORS

M. Nikolo, X. Shi, E. S. Choi, J. Jiang, J. D. Weiss, E. E. Hellstrom

ABSTRACT

Thermally assisted flux flow (TAFF) based on magneto-resistivity and ac susceptibility measurements is studied in a Ba(Fe0.91Co0.09)2As2(Tc=25.3 K) sample in magnetic fields up to 18 T. In addition to the upper critical field μ0Hc2 and the coherence length ξ(0), the flux flow activation energy U(T,H) has also been determined. The resistive transition width is proportional to μ0H, in contrast to Tinkham’s theoretical prediction. By applying Fisher’s model, the glass melting transition temperature Tg, which occurs in the upper TAFF state and not in the zero resistivity vortex solid regime, is calculated. The onset of TAFF temperature and the crossover temperature Tx from TAFF to flux flow are determined. By contrasting the ac susceptibility data with the resistivity data, considerable flux penetration appears even in the zero resistivity state, in addition to ac losses. The H-T phase diagram is drawn and shows weak pinning regime as the field approaches μ0Hc2, and the strength of the weak pinning decreases to 0 with increasing magnetic field from 0 to 18 T. More... »

PAGES

2231-2239

References to SciGraph publications

  • 1991. Ac Losses in Type-II Superconductors in MAGNETIC SUSCEPTIBILITY OF SUPERCONDUCTORS AND OTHER SPIN SYSTEMS
  • 1989. Flux Creep and the Crossover to Flux Flow in the Resistivity of High-Tc Superconductors in STRONG CORRELATION AND SUPERCONDUCTIVITY
  • 2011-08-03. Upper critical magnetic field in Ba0.68K0.32Fe2As2 and Ba(Fe0.93Co0.07)2As2 in JETP LETTERS
  • 1989. Flux Dynamics and Electronic Anisotropy in High-Tc Superconductors in STRONG CORRELATION AND SUPERCONDUCTIVITY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10948-014-2587-z

    DOI

    http://dx.doi.org/10.1007/s10948-014-2587-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039685097


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Condensed Matter Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Physics Department, Saint Louis University, 63103, Saint Louis, MO, USA", 
              "id": "http://www.grid.ac/institutes/grid.262962.b", 
              "name": [
                "Physics Department, Saint Louis University, 63103, Saint Louis, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nikolo", 
            "givenName": "M.", 
            "id": "sg:person.011472757650.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.481548.4", 
              "name": [
                "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "X.", 
            "id": "sg:person.012261435743.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.481548.4", 
              "name": [
                "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choi", 
            "givenName": "E. S.", 
            "id": "sg:person.0635107016.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.481548.4", 
              "name": [
                "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "J.", 
            "id": "sg:person.01154110202.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.481548.4", 
              "name": [
                "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Weiss", 
            "givenName": "J. D.", 
            "id": "sg:person.01056616531.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.481548.4", 
              "name": [
                "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hellstrom", 
            "givenName": "E. E.", 
            "id": "sg:person.0632002631.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-83836-1_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048985477", 
              "https://doi.org/10.1007/978-3-642-83836-1_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-2379-0_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022353196", 
              "https://doi.org/10.1007/978-1-4899-2379-0_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-83836-1_37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032188006", 
              "https://doi.org/10.1007/978-3-642-83836-1_37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0021364011110038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048820940", 
              "https://doi.org/10.1134/s0021364011110038"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06-17", 
        "datePublishedReg": "2014-06-17", 
        "description": "Thermally assisted flux flow (TAFF) based on magneto-resistivity and ac susceptibility measurements is studied in a Ba(Fe0.91Co0.09)2As2(Tc=25.3 K) sample in magnetic fields up to 18 T. In addition to the upper critical field \u03bc0Hc2 and the coherence length \u03be(0), the flux flow activation energy U(T,H) has also been determined. The resistive transition width is proportional to \u03bc0H, in contrast to Tinkham\u2019s theoretical prediction. By applying Fisher\u2019s model, the glass melting transition temperature Tg, which occurs in the upper TAFF state and not in the zero resistivity vortex solid regime, is calculated. The onset of TAFF temperature and the crossover temperature Tx from TAFF to flux flow are determined. By contrasting the ac susceptibility data with the resistivity data, considerable flux penetration appears even in the zero resistivity state, in addition to ac losses. The H-T phase diagram is drawn and shows weak pinning regime as the field approaches \u03bc0Hc2, and the strength of the weak pinning decreases to 0 with increasing magnetic field from 0 to 18 T.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10948-014-2587-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3484564", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3479346", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3113501", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1053198", 
            "issn": [
              "1557-1939", 
              "1557-1947"
            ], 
            "name": "Journal of Superconductivity and Novel Magnetism", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "flux flow", 
          "flux flow activation energy", 
          "magneto-transport properties", 
          "flow activation energy", 
          "magnetic field", 
          "theoretical predictions", 
          "transition temperature Tg", 
          "flux penetration", 
          "transition width", 
          "solid regime", 
          "temperature Tx", 
          "flow", 
          "temperature Tg", 
          "activation energy", 
          "resistive transition width", 
          "resistivity data", 
          "resistivity state", 
          "upper critical field \u03bc0Hc2", 
          "field", 
          "\u03bc0Hc2", 
          "phase diagram", 
          "Thermally", 
          "coherence length", 
          "glass", 
          "regime", 
          "temperature", 
          "strength", 
          "energy", 
          "penetration", 
          "properties", 
          "superconductors", 
          "measurements", 
          "width", 
          "model", 
          "prediction", 
          "Tg", 
          "Taff", 
          "addition", 
          "\u03bc0H", 
          "diagram", 
          "length", 
          "Tx", 
          "susceptibility measurements", 
          "state", 
          "data", 
          "loss", 
          "samples", 
          "Fisher model", 
          "ac susceptibility data", 
          "decrease", 
          "contrast", 
          "onset", 
          "susceptibility data", 
          "crossover temperature Tx", 
          "critical field \u03bc0Hc2", 
          "field \u03bc0Hc2", 
          "Tinkham\u2019s theoretical prediction", 
          "upper TAFF state", 
          "TAFF state", 
          "resistivity vortex solid regime", 
          "vortex solid regime", 
          "TAFF temperature", 
          "considerable flux penetration", 
          "weak pinning decreases", 
          "pinning decreases"
        ], 
        "name": "Magneto-transport Properties and Thermally Activated Flux Flow in Ba(Fe0.91Co0.09)2As2 Superconductor", 
        "pagination": "2231-2239", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039685097"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10948-014-2587-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10948-014-2587-z", 
          "https://app.dimensions.ai/details/publication/pub.1039685097"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_640.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10948-014-2587-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2587-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2587-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2587-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2587-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    193 TRIPLES      22 PREDICATES      96 URIs      82 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10948-014-2587-z schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 anzsrc-for:0204
    4 anzsrc-for:0206
    5 schema:author N0d314519e79048c8b39233e4a9ac85c7
    6 schema:citation sg:pub.10.1007/978-1-4899-2379-0_8
    7 sg:pub.10.1007/978-3-642-83836-1_35
    8 sg:pub.10.1007/978-3-642-83836-1_37
    9 sg:pub.10.1134/s0021364011110038
    10 schema:datePublished 2014-06-17
    11 schema:datePublishedReg 2014-06-17
    12 schema:description Thermally assisted flux flow (TAFF) based on magneto-resistivity and ac susceptibility measurements is studied in a Ba(Fe0.91Co0.09)2As2(Tc=25.3 K) sample in magnetic fields up to 18 T. In addition to the upper critical field μ0Hc2 and the coherence length ξ(0), the flux flow activation energy U(T,H) has also been determined. The resistive transition width is proportional to μ0H, in contrast to Tinkham’s theoretical prediction. By applying Fisher’s model, the glass melting transition temperature Tg, which occurs in the upper TAFF state and not in the zero resistivity vortex solid regime, is calculated. The onset of TAFF temperature and the crossover temperature Tx from TAFF to flux flow are determined. By contrasting the ac susceptibility data with the resistivity data, considerable flux penetration appears even in the zero resistivity state, in addition to ac losses. The H-T phase diagram is drawn and shows weak pinning regime as the field approaches μ0Hc2, and the strength of the weak pinning decreases to 0 with increasing magnetic field from 0 to 18 T.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Ncf50d3ee5c24400584775a5a850c75f0
    17 Nfdb1822b80924365a4bc62052540befb
    18 sg:journal.1053198
    19 schema:keywords Fisher model
    20 TAFF state
    21 TAFF temperature
    22 Taff
    23 Tg
    24 Thermally
    25 Tinkham’s theoretical prediction
    26 Tx
    27 ac susceptibility data
    28 activation energy
    29 addition
    30 coherence length
    31 considerable flux penetration
    32 contrast
    33 critical field μ0Hc2
    34 crossover temperature Tx
    35 data
    36 decrease
    37 diagram
    38 energy
    39 field
    40 field μ0Hc2
    41 flow
    42 flow activation energy
    43 flux flow
    44 flux flow activation energy
    45 flux penetration
    46 glass
    47 length
    48 loss
    49 magnetic field
    50 magneto-transport properties
    51 measurements
    52 model
    53 onset
    54 penetration
    55 phase diagram
    56 pinning decreases
    57 prediction
    58 properties
    59 regime
    60 resistive transition width
    61 resistivity data
    62 resistivity state
    63 resistivity vortex solid regime
    64 samples
    65 solid regime
    66 state
    67 strength
    68 superconductors
    69 susceptibility data
    70 susceptibility measurements
    71 temperature
    72 temperature Tg
    73 temperature Tx
    74 theoretical predictions
    75 transition temperature Tg
    76 transition width
    77 upper TAFF state
    78 upper critical field μ0Hc2
    79 vortex solid regime
    80 weak pinning decreases
    81 width
    82 μ0H
    83 μ0Hc2
    84 schema:name Magneto-transport Properties and Thermally Activated Flux Flow in Ba(Fe0.91Co0.09)2As2 Superconductor
    85 schema:pagination 2231-2239
    86 schema:productId N803ab28fe47a4098bdabf63ac4ff65ef
    87 N93256b3d20b743aca304e9680e2e7758
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039685097
    89 https://doi.org/10.1007/s10948-014-2587-z
    90 schema:sdDatePublished 2021-12-01T19:31
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher Nc1302b367ddb479eb548238ccdd8bebc
    93 schema:url https://doi.org/10.1007/s10948-014-2587-z
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N0a77db1e6937484f9e8599a10280b22e rdf:first sg:person.0635107016.86
    98 rdf:rest Ne7347ca801c3456ca12d3ae5c939f007
    99 N0d314519e79048c8b39233e4a9ac85c7 rdf:first sg:person.011472757650.45
    100 rdf:rest Na0559088f3864ae7925d006fa6f70e9b
    101 N803ab28fe47a4098bdabf63ac4ff65ef schema:name dimensions_id
    102 schema:value pub.1039685097
    103 rdf:type schema:PropertyValue
    104 N93256b3d20b743aca304e9680e2e7758 schema:name doi
    105 schema:value 10.1007/s10948-014-2587-z
    106 rdf:type schema:PropertyValue
    107 Na0559088f3864ae7925d006fa6f70e9b rdf:first sg:person.012261435743.14
    108 rdf:rest N0a77db1e6937484f9e8599a10280b22e
    109 Nc1302b367ddb479eb548238ccdd8bebc schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Nc85c57b9193d471d9b7ab6238ca2bfac rdf:first sg:person.0632002631.91
    112 rdf:rest rdf:nil
    113 Ncf50d3ee5c24400584775a5a850c75f0 schema:issueNumber 10
    114 rdf:type schema:PublicationIssue
    115 Ne7347ca801c3456ca12d3ae5c939f007 rdf:first sg:person.01154110202.55
    116 rdf:rest Nf616bac96b9d48dfa2bfb2015713401b
    117 Nf616bac96b9d48dfa2bfb2015713401b rdf:first sg:person.01056616531.73
    118 rdf:rest Nc85c57b9193d471d9b7ab6238ca2bfac
    119 Nfdb1822b80924365a4bc62052540befb schema:volumeNumber 27
    120 rdf:type schema:PublicationVolume
    121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Physical Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Condensed Matter Physics
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Quantum Physics
    132 rdf:type schema:DefinedTerm
    133 sg:grant.3113501 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2587-z
    134 rdf:type schema:MonetaryGrant
    135 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2587-z
    136 rdf:type schema:MonetaryGrant
    137 sg:grant.3484564 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2587-z
    138 rdf:type schema:MonetaryGrant
    139 sg:journal.1053198 schema:issn 1557-1939
    140 1557-1947
    141 schema:name Journal of Superconductivity and Novel Magnetism
    142 schema:publisher Springer Nature
    143 rdf:type schema:Periodical
    144 sg:person.01056616531.73 schema:affiliation grid-institutes:grid.481548.4
    145 schema:familyName Weiss
    146 schema:givenName J. D.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73
    148 rdf:type schema:Person
    149 sg:person.011472757650.45 schema:affiliation grid-institutes:grid.262962.b
    150 schema:familyName Nikolo
    151 schema:givenName M.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45
    153 rdf:type schema:Person
    154 sg:person.01154110202.55 schema:affiliation grid-institutes:grid.481548.4
    155 schema:familyName Jiang
    156 schema:givenName J.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55
    158 rdf:type schema:Person
    159 sg:person.012261435743.14 schema:affiliation grid-institutes:grid.481548.4
    160 schema:familyName Shi
    161 schema:givenName X.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14
    163 rdf:type schema:Person
    164 sg:person.0632002631.91 schema:affiliation grid-institutes:grid.481548.4
    165 schema:familyName Hellstrom
    166 schema:givenName E. E.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91
    168 rdf:type schema:Person
    169 sg:person.0635107016.86 schema:affiliation grid-institutes:grid.481548.4
    170 schema:familyName Choi
    171 schema:givenName E. S.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635107016.86
    173 rdf:type schema:Person
    174 sg:pub.10.1007/978-1-4899-2379-0_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022353196
    175 https://doi.org/10.1007/978-1-4899-2379-0_8
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/978-3-642-83836-1_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048985477
    178 https://doi.org/10.1007/978-3-642-83836-1_35
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/978-3-642-83836-1_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032188006
    181 https://doi.org/10.1007/978-3-642-83836-1_37
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1134/s0021364011110038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048820940
    184 https://doi.org/10.1134/s0021364011110038
    185 rdf:type schema:CreativeWork
    186 grid-institutes:grid.262962.b schema:alternateName Physics Department, Saint Louis University, 63103, Saint Louis, MO, USA
    187 schema:name Physics Department, Saint Louis University, 63103, Saint Louis, MO, USA
    188 rdf:type schema:Organization
    189 grid-institutes:grid.481548.4 schema:alternateName Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
    190 National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
    191 schema:name Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
    192 National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
    193 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...