Magnetotransport Properties, Thermally Activated Flux Flow, and Activation Energies in Ba(Fe0.95 Ni0.05)2As2 and Ba(Fe0.94 Ni0.06)2As2 Superconductors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05-29

AUTHORS

M. Nikolo, X. Shi, J. Jiang, J. D. Weiss, E. E. Hellstrom

ABSTRACT

Thermally assisted flux flow (TAFF) is studied in bulk Ba(Fe0.95 Ni0.05)2As2 (Tc = 20.4 K) and Ba(Fe0.94 Ni0.06)2As2 (Tc = 18.5 K) superconductors by transport measurements in magnetic fields up to 18 T. In addition, the upper critical field μ0Hc2(0) and the coherence length ξ(0) are determined. The data is analyzed in the context of the widely accepted Anderson-Kim model and Fischer model. The onset TAFF temperature and the crossover temperature Tx from TAFF to flux flow are determined. The flux pinning activation energy U is modeled as U(T,H) = U0(H) f(t) where f(t) is some temperature function and the modified Anderson-Kim model is used to extract U0, which is graphed as a function of magnetic field μ0H near Tc. The resistive regime is observed, which is caused by fluctuations. Fisher’s model is applied to determine the glass melting transition temperature; it occurs in the upper TAFF state and not in the expected zero-resistivity vortex solid regime. Furthermore, the resistive transition width is proportional to μ0H, in contrast to Tinkham’s prediction. The H-T phase diagram is drawn. More... »

PAGES

1983-1990

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-014-2550-z

DOI

http://dx.doi.org/10.1007/s10948-014-2550-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009622922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Department, Saint Louis University, 63103, Saint Louis, MO, USA", 
          "id": "http://www.grid.ac/institutes/grid.262962.b", 
          "name": [
            "Physics Department, Saint Louis University, 63103, Saint Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolo", 
        "givenName": "M.", 
        "id": "sg:person.011472757650.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "X.", 
        "id": "sg:person.012261435743.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "J.", 
        "id": "sg:person.01154110202.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "J. D.", 
        "id": "sg:person.01056616531.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellstrom", 
        "givenName": "E. E.", 
        "id": "sg:person.0632002631.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0021364011110038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048820940", 
          "https://doi.org/10.1134/s0021364011110038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10948-014-2587-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039685097", 
          "https://doi.org/10.1007/s10948-014-2587-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-83836-1_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048985477", 
          "https://doi.org/10.1007/978-3-642-83836-1_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-83836-1_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032188006", 
          "https://doi.org/10.1007/978-3-642-83836-1_37"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05-29", 
    "datePublishedReg": "2014-05-29", 
    "description": "Thermally assisted flux flow (TAFF) is studied in bulk Ba(Fe0.95 Ni0.05)2As2 (Tc = 20.4 K) and Ba(Fe0.94 Ni0.06)2As2 (Tc = 18.5 K) superconductors by transport measurements in magnetic fields up to 18 T. In addition, the upper critical field \u03bc0Hc2(0) and the coherence length \u03be(0) are determined. The data is analyzed in the context of the widely accepted Anderson-Kim model and Fischer model. The onset TAFF temperature and the crossover temperature Tx from TAFF to flux flow are determined. The flux pinning activation energy U is modeled as U(T,H) = U0(H) f(t) where f(t) is some temperature function and the modified Anderson-Kim model is used to extract U0, which is graphed as a function of magnetic field \u03bc0H near Tc. The resistive regime is observed, which is caused by fluctuations. Fisher\u2019s model is applied to determine the glass melting transition temperature; it occurs in the upper TAFF state and not in the expected zero-resistivity vortex solid regime. Furthermore, the resistive transition width is proportional to \u03bc0H, in contrast to Tinkham\u2019s prediction. The H-T phase diagram is drawn.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-014-2550-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3113501", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3479346", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3484564", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "magnetic field \u03bc0H", 
      "flux flow", 
      "magnetic field", 
      "transport measurements", 
      "coherence length", 
      "field \u03bc0H", 
      "resistive transition width", 
      "magnetotransport properties", 
      "solid regime", 
      "upper critical field", 
      "energy U", 
      "resistive regime", 
      "critical field", 
      "transition width", 
      "Anderson-Kim model", 
      "superconductors", 
      "phase diagram", 
      "\u03bc0H", 
      "activation energy U", 
      "field", 
      "regime", 
      "transition temperature", 
      "crossover temperature Tx", 
      "temperature Tx", 
      "energy", 
      "glass", 
      "activation energy", 
      "temperature", 
      "width", 
      "measurements", 
      "flux", 
      "fluctuations", 
      "Tc", 
      "state", 
      "Fisher model", 
      "prediction", 
      "diagram", 
      "Thermally", 
      "properties", 
      "temperature function", 
      "model", 
      "u0", 
      "function", 
      "length", 
      "flow", 
      "contrast", 
      "data", 
      "addition", 
      "Tx", 
      "context", 
      "Taff", 
      "Fischer's model", 
      "onset TAFF temperature", 
      "TAFF temperature", 
      "upper TAFF state", 
      "TAFF state", 
      "zero-resistivity vortex solid regime", 
      "vortex solid regime", 
      "Tinkham\u2019s prediction"
    ], 
    "name": "Magnetotransport Properties, Thermally Activated Flux Flow, and Activation Energies in Ba(Fe0.95 Ni0.05)2As2 and Ba(Fe0.94 Ni0.06)2As2 Superconductors", 
    "pagination": "1983-1990", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009622922"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-014-2550-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-014-2550-z", 
      "https://app.dimensions.ai/details/publication/pub.1009622922"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_644.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-014-2550-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2550-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2550-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2550-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-014-2550-z'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      22 PREDICATES      88 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-014-2550-z schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nca4eaed57f9448b993b1c861a3eef3c8
4 schema:citation sg:pub.10.1007/978-3-642-83836-1_35
5 sg:pub.10.1007/978-3-642-83836-1_37
6 sg:pub.10.1007/s10948-014-2587-z
7 sg:pub.10.1134/s0021364011110038
8 schema:datePublished 2014-05-29
9 schema:datePublishedReg 2014-05-29
10 schema:description Thermally assisted flux flow (TAFF) is studied in bulk Ba(Fe0.95 Ni0.05)2As2 (Tc = 20.4 K) and Ba(Fe0.94 Ni0.06)2As2 (Tc = 18.5 K) superconductors by transport measurements in magnetic fields up to 18 T. In addition, the upper critical field μ0Hc2(0) and the coherence length ξ(0) are determined. The data is analyzed in the context of the widely accepted Anderson-Kim model and Fischer model. The onset TAFF temperature and the crossover temperature Tx from TAFF to flux flow are determined. The flux pinning activation energy U is modeled as U(T,H) = U0(H) f(t) where f(t) is some temperature function and the modified Anderson-Kim model is used to extract U0, which is graphed as a function of magnetic field μ0H near Tc. The resistive regime is observed, which is caused by fluctuations. Fisher’s model is applied to determine the glass melting transition temperature; it occurs in the upper TAFF state and not in the expected zero-resistivity vortex solid regime. Furthermore, the resistive transition width is proportional to μ0H, in contrast to Tinkham’s prediction. The H-T phase diagram is drawn.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N84121160d5c5431a91f93a17e1fc370d
15 N92d4f6a5074b4956a27965b2a728aec3
16 sg:journal.1053198
17 schema:keywords Anderson-Kim model
18 Fischer's model
19 Fisher model
20 TAFF state
21 TAFF temperature
22 Taff
23 Tc
24 Thermally
25 Tinkham’s prediction
26 Tx
27 activation energy
28 activation energy U
29 addition
30 coherence length
31 context
32 contrast
33 critical field
34 crossover temperature Tx
35 data
36 diagram
37 energy
38 energy U
39 field
40 field μ0H
41 flow
42 fluctuations
43 flux
44 flux flow
45 function
46 glass
47 length
48 magnetic field
49 magnetic field μ0H
50 magnetotransport properties
51 measurements
52 model
53 onset TAFF temperature
54 phase diagram
55 prediction
56 properties
57 regime
58 resistive regime
59 resistive transition width
60 solid regime
61 state
62 superconductors
63 temperature
64 temperature Tx
65 temperature function
66 transition temperature
67 transition width
68 transport measurements
69 u0
70 upper TAFF state
71 upper critical field
72 vortex solid regime
73 width
74 zero-resistivity vortex solid regime
75 μ0H
76 schema:name Magnetotransport Properties, Thermally Activated Flux Flow, and Activation Energies in Ba(Fe0.95 Ni0.05)2As2 and Ba(Fe0.94 Ni0.06)2As2 Superconductors
77 schema:pagination 1983-1990
78 schema:productId N2666e2e92cd340069f28b7796d4b90e8
79 Ncb7e488923234b46a1660b730ab5a675
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009622922
81 https://doi.org/10.1007/s10948-014-2550-z
82 schema:sdDatePublished 2021-11-01T18:22
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nb43d945f22d64d809b6ce0c944200f81
85 schema:url https://doi.org/10.1007/s10948-014-2550-z
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N2666e2e92cd340069f28b7796d4b90e8 schema:name dimensions_id
90 schema:value pub.1009622922
91 rdf:type schema:PropertyValue
92 N5c65cc7792ed4ed980da6bb2bb8d9b10 rdf:first sg:person.012261435743.14
93 rdf:rest Nc6fbdc6ec3d7445cb728ac7870fab6b4
94 N84121160d5c5431a91f93a17e1fc370d schema:volumeNumber 27
95 rdf:type schema:PublicationVolume
96 N92d4f6a5074b4956a27965b2a728aec3 schema:issueNumber 9
97 rdf:type schema:PublicationIssue
98 Na735f07cc8324e37b52e4bf5ca6f3633 rdf:first sg:person.01056616531.73
99 rdf:rest Naa6009ed34b34718ac120b786e548b9b
100 Naa6009ed34b34718ac120b786e548b9b rdf:first sg:person.0632002631.91
101 rdf:rest rdf:nil
102 Nb43d945f22d64d809b6ce0c944200f81 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nc6fbdc6ec3d7445cb728ac7870fab6b4 rdf:first sg:person.01154110202.55
105 rdf:rest Na735f07cc8324e37b52e4bf5ca6f3633
106 Nca4eaed57f9448b993b1c861a3eef3c8 rdf:first sg:person.011472757650.45
107 rdf:rest N5c65cc7792ed4ed980da6bb2bb8d9b10
108 Ncb7e488923234b46a1660b730ab5a675 schema:name doi
109 schema:value 10.1007/s10948-014-2550-z
110 rdf:type schema:PropertyValue
111 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
115 schema:name Other Physical Sciences
116 rdf:type schema:DefinedTerm
117 sg:grant.3113501 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2550-z
118 rdf:type schema:MonetaryGrant
119 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2550-z
120 rdf:type schema:MonetaryGrant
121 sg:grant.3484564 http://pending.schema.org/fundedItem sg:pub.10.1007/s10948-014-2550-z
122 rdf:type schema:MonetaryGrant
123 sg:journal.1053198 schema:issn 1557-1939
124 1557-1947
125 schema:name Journal of Superconductivity and Novel Magnetism
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.01056616531.73 schema:affiliation grid-institutes:grid.481548.4
129 schema:familyName Weiss
130 schema:givenName J. D.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056616531.73
132 rdf:type schema:Person
133 sg:person.011472757650.45 schema:affiliation grid-institutes:grid.262962.b
134 schema:familyName Nikolo
135 schema:givenName M.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011472757650.45
137 rdf:type schema:Person
138 sg:person.01154110202.55 schema:affiliation grid-institutes:grid.481548.4
139 schema:familyName Jiang
140 schema:givenName J.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55
142 rdf:type schema:Person
143 sg:person.012261435743.14 schema:affiliation grid-institutes:grid.481548.4
144 schema:familyName Shi
145 schema:givenName X.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261435743.14
147 rdf:type schema:Person
148 sg:person.0632002631.91 schema:affiliation grid-institutes:grid.481548.4
149 schema:familyName Hellstrom
150 schema:givenName E. E.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91
152 rdf:type schema:Person
153 sg:pub.10.1007/978-3-642-83836-1_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048985477
154 https://doi.org/10.1007/978-3-642-83836-1_35
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/978-3-642-83836-1_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032188006
157 https://doi.org/10.1007/978-3-642-83836-1_37
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10948-014-2587-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039685097
160 https://doi.org/10.1007/s10948-014-2587-z
161 rdf:type schema:CreativeWork
162 sg:pub.10.1134/s0021364011110038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048820940
163 https://doi.org/10.1134/s0021364011110038
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.262962.b schema:alternateName Physics Department, Saint Louis University, 63103, Saint Louis, MO, USA
166 schema:name Physics Department, Saint Louis University, 63103, Saint Louis, MO, USA
167 rdf:type schema:Organization
168 grid-institutes:grid.481548.4 schema:alternateName Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
169 National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
170 schema:name Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
171 National High Magnetic Field Laboratory, Florida State University, 32310, Tallahassee, FL, USA
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...