Ginzburg–Landau Study of Superconductor with Regular Pinning Array View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01-24

AUTHORS

R. Cao, T. J. Yang, Lance Horng, T. C. Wu

ABSTRACT

The vortex distributions and dynamics in superconductors with triangular and honeycomb pinning arrays are investigated by numerical simulation of the two- dimensional (2-D) time-dependent Ginzburg–Landau equations. Periodic boundary conditions are implemented through specific gauge transformations under lattice translations. We model the pinning sites as holes. The simulation results at different magnetic fields are presented. For film with regular triangular pinning array, the vortices are all captured within the holes for a wide range of magnetic fields. For film with regular honeycomb pinning array, the interstitial vortices appear at relatively low magnetic fields. With an increase of magnetic field, the new vortices may enter the holes again and keep the number of vortices at the interstitial positions unchanged. These results confirm our explanations of the experimental results we obtained earlier. More... »

PAGES

2027-2031

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-012-2041-z

DOI

http://dx.doi.org/10.1007/s10948-012-2041-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015847419


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Feng Chia University, Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411298.7", 
          "name": [
            "Department of Electrical Engineering, Feng Chia University, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "R.", 
        "id": "sg:person.012742676037.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742676037.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering, Chung Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Electrical Engineering, Chung Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "T. J.", 
        "id": "sg:person.01044125222.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044125222.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, National Changhua University of Education, Changhua, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412038.c", 
          "name": [
            "Department of Physics, National Changhua University of Education, Changhua, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horng", 
        "givenName": "Lance", 
        "id": "sg:person.010564417007.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010564417007.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electronic Engineering, National Formosa University, Huwei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412054.6", 
          "name": [
            "Department of Electronic Engineering, National Formosa University, Huwei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "T. C.", 
        "id": "sg:person.014772323547.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772323547.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013-01-24", 
    "datePublishedReg": "2013-01-24", 
    "description": "The vortex distributions and dynamics in superconductors with triangular and honeycomb pinning arrays are investigated by numerical simulation of the two- dimensional (2-D) time-dependent Ginzburg\u2013Landau equations. Periodic boundary conditions are implemented through specific gauge transformations under lattice translations. We model the pinning sites as holes. The simulation results at different magnetic fields are presented. For film with regular triangular pinning array, the vortices are all captured within the holes for a wide range of magnetic fields. For film with regular honeycomb pinning array, the interstitial vortices appear at relatively low magnetic fields. With an increase of magnetic field, the new vortices may enter the holes again and keep the number of vortices at the interstitial positions unchanged. These results confirm our explanations of the experimental results we obtained earlier.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-012-2041-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "two-dimensional time-dependent Ginzburg", 
      "magnetic field", 
      "numerical simulations", 
      "regular honeycombs", 
      "new vortices", 
      "boundary conditions", 
      "periodic boundary conditions", 
      "vortices", 
      "number of vortices", 
      "vortex distribution", 
      "Time-Dependent Ginzburg", 
      "pinning sites", 
      "films", 
      "low magnetic fields", 
      "experimental results", 
      "regular pinning arrays", 
      "different magnetic fields", 
      "simulations", 
      "superconductors", 
      "pinning arrays", 
      "array", 
      "specific gauge transformation", 
      "holes", 
      "honeycomb", 
      "field", 
      "wide range", 
      "interstitial vortices", 
      "interstitial positions", 
      "equations", 
      "results", 
      "Landau equation", 
      "conditions", 
      "distribution", 
      "range", 
      "dynamics", 
      "transformation", 
      "increase", 
      "position", 
      "Ginzburg", 
      "triangular pinning arrays", 
      "number", 
      "study", 
      "lattice translations", 
      "sites", 
      "explanation", 
      "gauge transformations", 
      "translation", 
      "honeycomb pinning arrays", 
      "regular triangular pinning array", 
      "Ginzburg\u2013Landau Study"
    ], 
    "name": "Ginzburg\u2013Landau Study of Superconductor with Regular Pinning Array", 
    "pagination": "2027-2031", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015847419"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-012-2041-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-012-2041-z", 
      "https://app.dimensions.ai/details/publication/pub.1015847419"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_611.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-012-2041-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-012-2041-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-012-2041-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-012-2041-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-012-2041-z'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      77 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-012-2041-z schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N5eace4a9a5774f65863cf8400e6a9c2b
6 schema:datePublished 2013-01-24
7 schema:datePublishedReg 2013-01-24
8 schema:description The vortex distributions and dynamics in superconductors with triangular and honeycomb pinning arrays are investigated by numerical simulation of the two- dimensional (2-D) time-dependent Ginzburg–Landau equations. Periodic boundary conditions are implemented through specific gauge transformations under lattice translations. We model the pinning sites as holes. The simulation results at different magnetic fields are presented. For film with regular triangular pinning array, the vortices are all captured within the holes for a wide range of magnetic fields. For film with regular honeycomb pinning array, the interstitial vortices appear at relatively low magnetic fields. With an increase of magnetic field, the new vortices may enter the holes again and keep the number of vortices at the interstitial positions unchanged. These results confirm our explanations of the experimental results we obtained earlier.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N08e1552cfe164066b77a34ed84c9aa64
13 N6bf3f764dd434715bcce42c84588af5d
14 sg:journal.1053198
15 schema:keywords Ginzburg
16 Ginzburg–Landau Study
17 Landau equation
18 Time-Dependent Ginzburg
19 array
20 boundary conditions
21 conditions
22 different magnetic fields
23 distribution
24 dynamics
25 equations
26 experimental results
27 explanation
28 field
29 films
30 gauge transformations
31 holes
32 honeycomb
33 honeycomb pinning arrays
34 increase
35 interstitial positions
36 interstitial vortices
37 lattice translations
38 low magnetic fields
39 magnetic field
40 new vortices
41 number
42 number of vortices
43 numerical simulations
44 periodic boundary conditions
45 pinning arrays
46 pinning sites
47 position
48 range
49 regular honeycombs
50 regular pinning arrays
51 regular triangular pinning array
52 results
53 simulations
54 sites
55 specific gauge transformation
56 study
57 superconductors
58 transformation
59 translation
60 triangular pinning arrays
61 two-dimensional time-dependent Ginzburg
62 vortex distribution
63 vortices
64 wide range
65 schema:name Ginzburg–Landau Study of Superconductor with Regular Pinning Array
66 schema:pagination 2027-2031
67 schema:productId N0256b000bfee4f61b2a27f71ba59c4f0
68 Nda481ff2581e49e3b45b16a4e7b01830
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015847419
70 https://doi.org/10.1007/s10948-012-2041-z
71 schema:sdDatePublished 2021-12-01T19:29
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nf55b94cc55b5496d86f36f753c318d94
74 schema:url https://doi.org/10.1007/s10948-012-2041-z
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0256b000bfee4f61b2a27f71ba59c4f0 schema:name doi
79 schema:value 10.1007/s10948-012-2041-z
80 rdf:type schema:PropertyValue
81 N08e1552cfe164066b77a34ed84c9aa64 schema:volumeNumber 26
82 rdf:type schema:PublicationVolume
83 N40899debd80145ab852022a3dd7f42eb rdf:first sg:person.010564417007.25
84 rdf:rest N9d4ae983d2234570a4f5a2ce66c16972
85 N5eace4a9a5774f65863cf8400e6a9c2b rdf:first sg:person.012742676037.56
86 rdf:rest Ndb1a4efbaa024931837a26a843349e24
87 N6bf3f764dd434715bcce42c84588af5d schema:issueNumber 5
88 rdf:type schema:PublicationIssue
89 N9d4ae983d2234570a4f5a2ce66c16972 rdf:first sg:person.014772323547.38
90 rdf:rest rdf:nil
91 Nda481ff2581e49e3b45b16a4e7b01830 schema:name dimensions_id
92 schema:value pub.1015847419
93 rdf:type schema:PropertyValue
94 Ndb1a4efbaa024931837a26a843349e24 rdf:first sg:person.01044125222.88
95 rdf:rest N40899debd80145ab852022a3dd7f42eb
96 Nf55b94cc55b5496d86f36f753c318d94 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
102 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
105 schema:name Condensed Matter Physics
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
108 schema:name Quantum Physics
109 rdf:type schema:DefinedTerm
110 sg:journal.1053198 schema:issn 1557-1939
111 1557-1947
112 schema:name Journal of Superconductivity and Novel Magnetism
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:person.01044125222.88 schema:affiliation grid-institutes:grid.411655.2
116 schema:familyName Yang
117 schema:givenName T. J.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044125222.88
119 rdf:type schema:Person
120 sg:person.010564417007.25 schema:affiliation grid-institutes:grid.412038.c
121 schema:familyName Horng
122 schema:givenName Lance
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010564417007.25
124 rdf:type schema:Person
125 sg:person.012742676037.56 schema:affiliation grid-institutes:grid.411298.7
126 schema:familyName Cao
127 schema:givenName R.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742676037.56
129 rdf:type schema:Person
130 sg:person.014772323547.38 schema:affiliation grid-institutes:grid.412054.6
131 schema:familyName Wu
132 schema:givenName T. C.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014772323547.38
134 rdf:type schema:Person
135 grid-institutes:grid.411298.7 schema:alternateName Department of Electrical Engineering, Feng Chia University, Taichung, Taiwan
136 schema:name Department of Electrical Engineering, Feng Chia University, Taichung, Taiwan
137 rdf:type schema:Organization
138 grid-institutes:grid.411655.2 schema:alternateName Department of Electrical Engineering, Chung Hua University, Hsinchu, Taiwan
139 schema:name Department of Electrical Engineering, Chung Hua University, Hsinchu, Taiwan
140 rdf:type schema:Organization
141 grid-institutes:grid.412038.c schema:alternateName Department of Physics, National Changhua University of Education, Changhua, Taiwan
142 schema:name Department of Physics, National Changhua University of Education, Changhua, Taiwan
143 rdf:type schema:Organization
144 grid-institutes:grid.412054.6 schema:alternateName Department of Electronic Engineering, National Formosa University, Huwei, Taiwan
145 schema:name Department of Electronic Engineering, National Formosa University, Huwei, Taiwan
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...