Quantum Effects in Uniform and Staggered Moment of Frustrated Quasi-2D Antiferromagnets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-07

AUTHORS

Peter Thalmeier, Burkhard Schmidt, Mohammad Siahatgar

ABSTRACT

We investigate the frustrated two-dimensional S=1/2 next nearest neighbor Heisenberg antiferromagnet on a square lattice. This model is relevant for a variety of V oxides and Cu compounds and its anisotropic version for the Fe pnictides. We use spin-wave theory and exact diagonalization in a magnetic field for finite tiles with a new method for the finite size scaling procedure. The induced uniform and the staggered moment in the antiferromagnetically ordered phases are calculated. They deviate strongly from classical behavior depending on frustration ratio J2/J1 and the exchange anisotropy. The former may be determined by comparison with experimental saturation fields. Applying a magnetic field up to one half of the saturation field stabilizes the staggered moment in the striped columnar (CAF) and Néel (NAF) antiferromagnetic phases, in particular close to the phase boundaries. The field dependence of the staggered moment uniquely determines the exchange parameters. This allows to derive the frustration ratio J2/J1 also from the field dependence of neutron diffraction data. More... »

PAGES

1267-1271

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-012-1580-7

DOI

http://dx.doi.org/10.1007/s10948-012-1580-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029463633


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for the Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "Peter", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for the Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Burkhard", 
        "id": "sg:person.014207120626.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207120626.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for the Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siahatgar", 
        "givenName": "Mohammad", 
        "id": "sg:person.015004501226.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004501226.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-8984/18/4/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010592806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/4/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010592806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013530882", 
          "https://doi.org/10.1038/nphys1336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.165101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014204367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.165101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014204367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.113409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018309105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.113409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018309105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2004-00156-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018927738", 
          "https://doi.org/10.1140/epjb/e2004-00156-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.064431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020454562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.064431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020454562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021555782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021555782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.7278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021839119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.7278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021839119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.104441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029954969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.104441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029954969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.027213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039450198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.027213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039450198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.075123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039519162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.075123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039519162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.125113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046410416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.125113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046410416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.134409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048800007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.134409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048800007"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-07", 
    "datePublishedReg": "2012-07-01", 
    "description": "We investigate the frustrated two-dimensional S=1/2 next nearest neighbor Heisenberg antiferromagnet on a square lattice. This model is relevant for a variety of V oxides and Cu compounds and its anisotropic version for the Fe pnictides. We use spin-wave theory and exact diagonalization in a magnetic field for finite tiles with a new method for the finite size scaling procedure. The induced uniform and the staggered moment in the antiferromagnetically ordered phases are calculated. They deviate strongly from classical behavior depending on frustration ratio J2/J1 and the exchange anisotropy. The former may be determined by comparison with experimental saturation fields. Applying a magnetic field up to one half of the saturation field stabilizes the staggered moment in the striped columnar (CAF) and N\u00e9el (NAF) antiferromagnetic phases, in particular close to the phase boundaries. The field dependence of the staggered moment uniquely determines the exchange parameters. This allows to derive the frustration ratio J2/J1 also from the field dependence of neutron diffraction data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10948-012-1580-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Quantum Effects in Uniform and Staggered Moment of Frustrated Quasi-2D Antiferromagnets", 
    "pagination": "1267-1271", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c5c31a054a3cc3dbb1e8e61ecf737b8768f7a6024c3ce08ec5bc749c7d22c94"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-012-1580-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029463633"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-012-1580-7", 
      "https://app.dimensions.ai/details/publication/pub.1029463633"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10948-012-1580-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-012-1580-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-012-1580-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-012-1580-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-012-1580-7'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-012-1580-7 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N021c67a349ac4a1ebc56d4a04b6017f4
4 schema:citation sg:pub.10.1038/nphys1336
5 sg:pub.10.1140/epjb/e2004-00156-3
6 https://doi.org/10.1088/0953-8984/18/4/015
7 https://doi.org/10.1103/physrevb.60.7278
8 https://doi.org/10.1103/physrevb.68.113409
9 https://doi.org/10.1103/physrevb.76.125113
10 https://doi.org/10.1103/physrevb.77.104441
11 https://doi.org/10.1103/physrevb.81.134409
12 https://doi.org/10.1103/physrevb.81.165101
13 https://doi.org/10.1103/physrevb.83.075123
14 https://doi.org/10.1103/physrevb.84.064431
15 https://doi.org/10.1103/physrevlett.85.1318
16 https://doi.org/10.1103/physrevlett.96.027213
17 schema:datePublished 2012-07
18 schema:datePublishedReg 2012-07-01
19 schema:description We investigate the frustrated two-dimensional S=1/2 next nearest neighbor Heisenberg antiferromagnet on a square lattice. This model is relevant for a variety of V oxides and Cu compounds and its anisotropic version for the Fe pnictides. We use spin-wave theory and exact diagonalization in a magnetic field for finite tiles with a new method for the finite size scaling procedure. The induced uniform and the staggered moment in the antiferromagnetically ordered phases are calculated. They deviate strongly from classical behavior depending on frustration ratio J2/J1 and the exchange anisotropy. The former may be determined by comparison with experimental saturation fields. Applying a magnetic field up to one half of the saturation field stabilizes the staggered moment in the striped columnar (CAF) and Néel (NAF) antiferromagnetic phases, in particular close to the phase boundaries. The field dependence of the staggered moment uniquely determines the exchange parameters. This allows to derive the frustration ratio J2/J1 also from the field dependence of neutron diffraction data.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N4afe6cd51a414306aa6e302a86b743c7
24 Nb8094eade7824d66875445d6fdb62bef
25 sg:journal.1053198
26 schema:name Quantum Effects in Uniform and Staggered Moment of Frustrated Quasi-2D Antiferromagnets
27 schema:pagination 1267-1271
28 schema:productId N1acdf655b65c4064869c0fad0d6971b0
29 N1c3211bbb1af4095b08f49eb99e2e4d7
30 N58a25ee167214fee9232ac024c7253c8
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029463633
32 https://doi.org/10.1007/s10948-012-1580-7
33 schema:sdDatePublished 2019-04-10T16:42
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N83a4c8e179fa4d359d900db9060dbc22
36 schema:url http://link.springer.com/10.1007%2Fs10948-012-1580-7
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N021c67a349ac4a1ebc56d4a04b6017f4 rdf:first sg:person.015501240375.83
41 rdf:rest N31f70ff04d9e485f89a827e5d205cf89
42 N1acdf655b65c4064869c0fad0d6971b0 schema:name doi
43 schema:value 10.1007/s10948-012-1580-7
44 rdf:type schema:PropertyValue
45 N1c3211bbb1af4095b08f49eb99e2e4d7 schema:name readcube_id
46 schema:value 8c5c31a054a3cc3dbb1e8e61ecf737b8768f7a6024c3ce08ec5bc749c7d22c94
47 rdf:type schema:PropertyValue
48 N31f70ff04d9e485f89a827e5d205cf89 rdf:first sg:person.014207120626.15
49 rdf:rest Nb4a7181ccf454ef3a65169e49745f709
50 N4afe6cd51a414306aa6e302a86b743c7 schema:issueNumber 5
51 rdf:type schema:PublicationIssue
52 N58a25ee167214fee9232ac024c7253c8 schema:name dimensions_id
53 schema:value pub.1029463633
54 rdf:type schema:PropertyValue
55 N83a4c8e179fa4d359d900db9060dbc22 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nb4a7181ccf454ef3a65169e49745f709 rdf:first sg:person.015004501226.29
58 rdf:rest rdf:nil
59 Nb8094eade7824d66875445d6fdb62bef schema:volumeNumber 25
60 rdf:type schema:PublicationVolume
61 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
62 schema:name Physical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
65 schema:name Other Physical Sciences
66 rdf:type schema:DefinedTerm
67 sg:journal.1053198 schema:issn 1557-1939
68 1557-1947
69 schema:name Journal of Superconductivity and Novel Magnetism
70 rdf:type schema:Periodical
71 sg:person.014207120626.15 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
72 schema:familyName Schmidt
73 schema:givenName Burkhard
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207120626.15
75 rdf:type schema:Person
76 sg:person.015004501226.29 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
77 schema:familyName Siahatgar
78 schema:givenName Mohammad
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004501226.29
80 rdf:type schema:Person
81 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
82 schema:familyName Thalmeier
83 schema:givenName Peter
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
85 rdf:type schema:Person
86 sg:pub.10.1038/nphys1336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013530882
87 https://doi.org/10.1038/nphys1336
88 rdf:type schema:CreativeWork
89 sg:pub.10.1140/epjb/e2004-00156-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018927738
90 https://doi.org/10.1140/epjb/e2004-00156-3
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1088/0953-8984/18/4/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010592806
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevb.60.7278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021839119
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevb.68.113409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018309105
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevb.76.125113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046410416
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevb.77.104441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029954969
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevb.81.134409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048800007
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevb.81.165101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014204367
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevb.83.075123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039519162
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physrevb.84.064431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020454562
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevlett.85.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021555782
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevlett.96.027213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039450198
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
115 schema:name Max Planck Institute for the Chemical Physics of Solids, 01187, Dresden, Germany
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...