Non-substitutional Sn Defects in Ge1−xSnx Alloys for Opto- and Nanoelectronics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01-03

AUTHORS

R. A. Barrio, J. D. Querales Flores, J. D. Fuhr, C. I. Ventura

ABSTRACT

Important technological applications are envisaged for Ge1−xSnx alloys. They provide a route to obtain direct-gap group IV materials, tuneable by concentration. Therefore, these alloys are ideal candidates for optoelectronic devices, highly compatible with Si integrated circuits. Contrary to other binary alloys with group IV elements, homogeneous Ge1−xSnx alloys, as required for device applications, have proven difficult to form above a certain temperature-dependent critical Sn concentration. Through a detailed ab-initio local defect study, and the proposal of a statistical model for the formation of these alloys, we predicted that a new type of Sn defect (β-Sn), consisting of a single Sn atom in the centre of a Ge divacancy, might be formed. The environment of this defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of white tin and its segregation, as found in amorphous samples. We confirmed that Sn would enter substitutionally in the Ge lattice, but above a temperature-dependent critical concentration, non-substitutional β-Sn defects should be formed, consistent with experimental observations.In this paper we introduce a two-site substitutional equivalent for the non-substitutional β-Sn defect in Ge, as needed in order to be able to include β-Sn in electronic structure calculations with effective-field electronic models for disorder, like the Virtual Crystal Approximation (VCA). The equivalent substitutional model is derived in order to take into account the different symmetries in the immediate environment of the substitutional α and non-substitutional β defect sites and their effect on the electronic structure. More... »

PAGES

2213-2217

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4

DOI

http://dx.doi.org/10.1007/s10948-011-1401-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028386943


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto de F\u00edsica, U.N.A.M., Apartado Postal 20-364, 01000, M\u00e9xico D.F., Mexico", 
          "id": "http://www.grid.ac/institutes/grid.9486.3", 
          "name": [
            "Instituto de F\u00edsica, U.N.A.M., Apartado Postal 20-364, 01000, M\u00e9xico D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barrio", 
        "givenName": "R. A.", 
        "id": "sg:person.01131270052.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131270052.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Balseiro, 8400, Bariloche, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.466813.e", 
          "name": [
            "Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina", 
            "Instituto Balseiro, 8400, Bariloche, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Querales Flores", 
        "givenName": "J. D.", 
        "id": "sg:person.012456325153.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456325153.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.418211.f", 
          "name": [
            "Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuhr", 
        "givenName": "J. D.", 
        "id": "sg:person.0603665537.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603665537.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Nacional de R\u00edo Negro, 8400, Bariloche, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.440499.4", 
          "name": [
            "Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina", 
            "Universidad Nacional de R\u00edo Negro, 8400, Bariloche, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ventura", 
        "givenName": "C. I.", 
        "id": "sg:person.013253705553.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013253705553.09"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-01-03", 
    "datePublishedReg": "2012-01-03", 
    "description": "Important technological applications are envisaged for Ge1\u2212xSnx alloys. They provide a route to obtain direct-gap group IV materials, tuneable by concentration. Therefore, these alloys are ideal candidates for optoelectronic devices, highly compatible with Si integrated circuits. Contrary to other binary alloys with group IV elements, homogeneous Ge1\u2212xSnx alloys, as required for device applications, have proven difficult to form above a certain temperature-dependent critical Sn concentration. Through a detailed ab-initio local defect study, and the proposal of a statistical model for the formation of these alloys, we predicted that a new type of Sn defect (\u03b2-Sn), consisting of a single Sn atom in the centre of a Ge divacancy, might be formed. The environment of this defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of white tin and its segregation, as found in amorphous samples. We confirmed that Sn would enter substitutionally in the Ge lattice, but above a temperature-dependent critical concentration, non-substitutional \u03b2-Sn defects should be formed, consistent with experimental observations.In this paper we introduce a two-site substitutional equivalent for the non-substitutional \u03b2-Sn defect in Ge, as needed in order to be able to include \u03b2-Sn in electronic structure calculations with effective-field electronic models for disorder, like the Virtual Crystal Approximation (VCA). The equivalent substitutional model is derived in order to take into account the different symmetries in the immediate environment of the substitutional \u03b1 and non-substitutional \u03b2 defect sites and their effect on the electronic structure.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-011-1401-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "group IV materials", 
      "Sn defect", 
      "important technological applications", 
      "alloy", 
      "device applications", 
      "binary alloys", 
      "optoelectronic devices", 
      "Ge lattice", 
      "Sn concentration", 
      "technological applications", 
      "virtual crystal approximation", 
      "group IV elements", 
      "experimental observations", 
      "single Sn atoms", 
      "defect studies", 
      "amorphous samples", 
      "defect sites", 
      "Sn", 
      "new type", 
      "ideal candidate", 
      "Si", 
      "substitutional model", 
      "tin", 
      "electronic model", 
      "applications", 
      "critical concentration", 
      "devices", 
      "crystal approximation", 
      "white tin", 
      "opto", 
      "Ge", 
      "nucleation", 
      "nanoelectronics", 
      "materials", 
      "Sn atoms", 
      "model", 
      "defects", 
      "order", 
      "configuration", 
      "circuit", 
      "concentration", 
      "environment", 
      "structure", 
      "segregation", 
      "electronic structure", 
      "calculations", 
      "route", 
      "elements", 
      "statistical model", 
      "formation", 
      "account", 
      "lattice", 
      "approximation", 
      "candidates", 
      "effect", 
      "structure calculations", 
      "electronic structure calculations", 
      "observations", 
      "types", 
      "divacancies", 
      "samples", 
      "different symmetries", 
      "immediate environment", 
      "study", 
      "atoms", 
      "proposal", 
      "equivalent", 
      "symmetry", 
      "center", 
      "sites", 
      "octahedral configuration", 
      "disorders", 
      "paper", 
      "direct-gap group IV materials", 
      "IV materials", 
      "IV elements", 
      "certain temperature-dependent critical Sn concentration", 
      "temperature-dependent critical Sn concentration", 
      "critical Sn concentration", 
      "detailed ab-initio local defect study", 
      "ab-initio local defect study", 
      "local defect study", 
      "Ge divacancy", 
      "cubic octahedral configuration", 
      "temperature-dependent critical concentration", 
      "two-site substitutional equivalent", 
      "substitutional equivalent", 
      "effective-field electronic models", 
      "equivalent substitutional model", 
      "substitutional \u03b1", 
      "Non-substitutional Sn"
    ], 
    "name": "Non-substitutional Sn Defects in Ge1\u2212xSnx Alloys for Opto- and Nanoelectronics", 
    "pagination": "2213-2217", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028386943"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-011-1401-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-011-1401-4", 
      "https://app.dimensions.ai/details/publication/pub.1028386943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_562.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-011-1401-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      118 URIs      108 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-011-1401-4 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N7f46a0490d0a45bbbf8eff8ca8c15976
6 schema:datePublished 2012-01-03
7 schema:datePublishedReg 2012-01-03
8 schema:description Important technological applications are envisaged for Ge1−xSnx alloys. They provide a route to obtain direct-gap group IV materials, tuneable by concentration. Therefore, these alloys are ideal candidates for optoelectronic devices, highly compatible with Si integrated circuits. Contrary to other binary alloys with group IV elements, homogeneous Ge1−xSnx alloys, as required for device applications, have proven difficult to form above a certain temperature-dependent critical Sn concentration. Through a detailed ab-initio local defect study, and the proposal of a statistical model for the formation of these alloys, we predicted that a new type of Sn defect (β-Sn), consisting of a single Sn atom in the centre of a Ge divacancy, might be formed. The environment of this defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of white tin and its segregation, as found in amorphous samples. We confirmed that Sn would enter substitutionally in the Ge lattice, but above a temperature-dependent critical concentration, non-substitutional β-Sn defects should be formed, consistent with experimental observations.In this paper we introduce a two-site substitutional equivalent for the non-substitutional β-Sn defect in Ge, as needed in order to be able to include β-Sn in electronic structure calculations with effective-field electronic models for disorder, like the Virtual Crystal Approximation (VCA). The equivalent substitutional model is derived in order to take into account the different symmetries in the immediate environment of the substitutional α and non-substitutional β defect sites and their effect on the electronic structure.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nb5e8fcff842142b297b016b65c9ad3b0
13 Nccc69599f8f94c65b9465667c2eb0050
14 sg:journal.1053198
15 schema:keywords Ge
16 Ge divacancy
17 Ge lattice
18 IV elements
19 IV materials
20 Non-substitutional Sn
21 Si
22 Sn
23 Sn atoms
24 Sn concentration
25 Sn defect
26 ab-initio local defect study
27 account
28 alloy
29 amorphous samples
30 applications
31 approximation
32 atoms
33 binary alloys
34 calculations
35 candidates
36 center
37 certain temperature-dependent critical Sn concentration
38 circuit
39 concentration
40 configuration
41 critical Sn concentration
42 critical concentration
43 crystal approximation
44 cubic octahedral configuration
45 defect sites
46 defect studies
47 defects
48 detailed ab-initio local defect study
49 device applications
50 devices
51 different symmetries
52 direct-gap group IV materials
53 disorders
54 divacancies
55 effect
56 effective-field electronic models
57 electronic model
58 electronic structure
59 electronic structure calculations
60 elements
61 environment
62 equivalent
63 equivalent substitutional model
64 experimental observations
65 formation
66 group IV elements
67 group IV materials
68 ideal candidate
69 immediate environment
70 important technological applications
71 lattice
72 local defect study
73 materials
74 model
75 nanoelectronics
76 new type
77 nucleation
78 observations
79 octahedral configuration
80 opto
81 optoelectronic devices
82 order
83 paper
84 proposal
85 route
86 samples
87 segregation
88 single Sn atoms
89 sites
90 statistical model
91 structure
92 structure calculations
93 study
94 substitutional equivalent
95 substitutional model
96 substitutional α
97 symmetry
98 technological applications
99 temperature-dependent critical Sn concentration
100 temperature-dependent critical concentration
101 tin
102 two-site substitutional equivalent
103 types
104 virtual crystal approximation
105 white tin
106 schema:name Non-substitutional Sn Defects in Ge1−xSnx Alloys for Opto- and Nanoelectronics
107 schema:pagination 2213-2217
108 schema:productId N3871c9efdca54ae187dc79c7f4228369
109 Na16400b2a36a4cf8ab0e515c53cdfdb8
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386943
111 https://doi.org/10.1007/s10948-011-1401-4
112 schema:sdDatePublished 2022-01-01T18:27
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher N7e5da3b55d774ef181dc5bc5623779e6
115 schema:url https://doi.org/10.1007/s10948-011-1401-4
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N1512f097f8864846b2b6893d5e4ce385 rdf:first sg:person.013253705553.09
120 rdf:rest rdf:nil
121 N3209d76e20754027b360860a290584d7 rdf:first sg:person.012456325153.04
122 rdf:rest Ne8e6babdff25462b9c775a78c5319d94
123 N3871c9efdca54ae187dc79c7f4228369 schema:name doi
124 schema:value 10.1007/s10948-011-1401-4
125 rdf:type schema:PropertyValue
126 N7e5da3b55d774ef181dc5bc5623779e6 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N7f46a0490d0a45bbbf8eff8ca8c15976 rdf:first sg:person.01131270052.63
129 rdf:rest N3209d76e20754027b360860a290584d7
130 Na16400b2a36a4cf8ab0e515c53cdfdb8 schema:name dimensions_id
131 schema:value pub.1028386943
132 rdf:type schema:PropertyValue
133 Nb5e8fcff842142b297b016b65c9ad3b0 schema:volumeNumber 26
134 rdf:type schema:PublicationVolume
135 Nccc69599f8f94c65b9465667c2eb0050 schema:issueNumber 6
136 rdf:type schema:PublicationIssue
137 Ne8e6babdff25462b9c775a78c5319d94 rdf:first sg:person.0603665537.42
138 rdf:rest N1512f097f8864846b2b6893d5e4ce385
139 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
140 schema:name Physical Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
143 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
146 schema:name Condensed Matter Physics
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
149 schema:name Quantum Physics
150 rdf:type schema:DefinedTerm
151 sg:journal.1053198 schema:issn 1557-1939
152 1557-1947
153 schema:name Journal of Superconductivity and Novel Magnetism
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.01131270052.63 schema:affiliation grid-institutes:grid.9486.3
157 schema:familyName Barrio
158 schema:givenName R. A.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131270052.63
160 rdf:type schema:Person
161 sg:person.012456325153.04 schema:affiliation grid-institutes:grid.466813.e
162 schema:familyName Querales Flores
163 schema:givenName J. D.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456325153.04
165 rdf:type schema:Person
166 sg:person.013253705553.09 schema:affiliation grid-institutes:grid.440499.4
167 schema:familyName Ventura
168 schema:givenName C. I.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013253705553.09
170 rdf:type schema:Person
171 sg:person.0603665537.42 schema:affiliation grid-institutes:grid.418211.f
172 schema:familyName Fuhr
173 schema:givenName J. D.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603665537.42
175 rdf:type schema:Person
176 grid-institutes:grid.418211.f schema:alternateName Centro Atómico Bariloche, 8400, Bariloche, Argentina
177 schema:name Centro Atómico Bariloche, 8400, Bariloche, Argentina
178 rdf:type schema:Organization
179 grid-institutes:grid.440499.4 schema:alternateName Universidad Nacional de Río Negro, 8400, Bariloche, Argentina
180 schema:name Centro Atómico Bariloche, 8400, Bariloche, Argentina
181 Universidad Nacional de Río Negro, 8400, Bariloche, Argentina
182 rdf:type schema:Organization
183 grid-institutes:grid.466813.e schema:alternateName Instituto Balseiro, 8400, Bariloche, Argentina
184 schema:name Centro Atómico Bariloche, 8400, Bariloche, Argentina
185 Instituto Balseiro, 8400, Bariloche, Argentina
186 rdf:type schema:Organization
187 grid-institutes:grid.9486.3 schema:alternateName Instituto de Física, U.N.A.M., Apartado Postal 20-364, 01000, México D.F., Mexico
188 schema:name Instituto de Física, U.N.A.M., Apartado Postal 20-364, 01000, México D.F., Mexico
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...