Ontology type: schema:ScholarlyArticle
2012-01-03
AUTHORSR. A. Barrio, J. D. Querales Flores, J. D. Fuhr, C. I. Ventura
ABSTRACTImportant technological applications are envisaged for Ge1−xSnx alloys. They provide a route to obtain direct-gap group IV materials, tuneable by concentration. Therefore, these alloys are ideal candidates for optoelectronic devices, highly compatible with Si integrated circuits. Contrary to other binary alloys with group IV elements, homogeneous Ge1−xSnx alloys, as required for device applications, have proven difficult to form above a certain temperature-dependent critical Sn concentration. Through a detailed ab-initio local defect study, and the proposal of a statistical model for the formation of these alloys, we predicted that a new type of Sn defect (β-Sn), consisting of a single Sn atom in the centre of a Ge divacancy, might be formed. The environment of this defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of white tin and its segregation, as found in amorphous samples. We confirmed that Sn would enter substitutionally in the Ge lattice, but above a temperature-dependent critical concentration, non-substitutional β-Sn defects should be formed, consistent with experimental observations.In this paper we introduce a two-site substitutional equivalent for the non-substitutional β-Sn defect in Ge, as needed in order to be able to include β-Sn in electronic structure calculations with effective-field electronic models for disorder, like the Virtual Crystal Approximation (VCA). The equivalent substitutional model is derived in order to take into account the different symmetries in the immediate environment of the substitutional α and non-substitutional β defect sites and their effect on the electronic structure. More... »
PAGES2213-2217
http://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4
DOIhttp://dx.doi.org/10.1007/s10948-011-1401-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1028386943
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Instituto de F\u00edsica, U.N.A.M., Apartado Postal 20-364, 01000, M\u00e9xico D.F., Mexico",
"id": "http://www.grid.ac/institutes/grid.9486.3",
"name": [
"Instituto de F\u00edsica, U.N.A.M., Apartado Postal 20-364, 01000, M\u00e9xico D.F., Mexico"
],
"type": "Organization"
},
"familyName": "Barrio",
"givenName": "R. A.",
"id": "sg:person.01131270052.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131270052.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Instituto Balseiro, 8400, Bariloche, Argentina",
"id": "http://www.grid.ac/institutes/grid.466813.e",
"name": [
"Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina",
"Instituto Balseiro, 8400, Bariloche, Argentina"
],
"type": "Organization"
},
"familyName": "Querales Flores",
"givenName": "J. D.",
"id": "sg:person.012456325153.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456325153.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina",
"id": "http://www.grid.ac/institutes/grid.418211.f",
"name": [
"Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina"
],
"type": "Organization"
},
"familyName": "Fuhr",
"givenName": "J. D.",
"id": "sg:person.0603665537.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603665537.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universidad Nacional de R\u00edo Negro, 8400, Bariloche, Argentina",
"id": "http://www.grid.ac/institutes/grid.440499.4",
"name": [
"Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina",
"Universidad Nacional de R\u00edo Negro, 8400, Bariloche, Argentina"
],
"type": "Organization"
},
"familyName": "Ventura",
"givenName": "C. I.",
"id": "sg:person.013253705553.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013253705553.09"
],
"type": "Person"
}
],
"datePublished": "2012-01-03",
"datePublishedReg": "2012-01-03",
"description": "Important technological applications are envisaged for Ge1\u2212xSnx alloys. They provide a route to obtain direct-gap group IV materials, tuneable by concentration. Therefore, these alloys are ideal candidates for optoelectronic devices, highly compatible with Si integrated circuits. Contrary to other binary alloys with group IV elements, homogeneous Ge1\u2212xSnx alloys, as required for device applications, have proven difficult to form above a certain temperature-dependent critical Sn concentration. Through a detailed ab-initio local defect study, and the proposal of a statistical model for the formation of these alloys, we predicted that a new type of Sn defect (\u03b2-Sn), consisting of a single Sn atom in the centre of a Ge divacancy, might be formed. The environment of this defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of white tin and its segregation, as found in amorphous samples. We confirmed that Sn would enter substitutionally in the Ge lattice, but above a temperature-dependent critical concentration, non-substitutional \u03b2-Sn defects should be formed, consistent with experimental observations.In this paper we introduce a two-site substitutional equivalent for the non-substitutional \u03b2-Sn defect in Ge, as needed in order to be able to include \u03b2-Sn in electronic structure calculations with effective-field electronic models for disorder, like the Virtual Crystal Approximation (VCA). The equivalent substitutional model is derived in order to take into account the different symmetries in the immediate environment of the substitutional \u03b1 and non-substitutional \u03b2 defect sites and their effect on the electronic structure.",
"genre": "article",
"id": "sg:pub.10.1007/s10948-011-1401-4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1053198",
"issn": [
"1557-1939",
"1557-1947"
],
"name": "Journal of Superconductivity and Novel Magnetism",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "26"
}
],
"keywords": [
"virtual crystal approximation",
"statistical model",
"electronic structure calculations",
"white tin",
"single Sn atoms",
"group IV materials",
"Sn defects",
"different symmetries",
"important technological applications",
"crystal approximation",
"electronic model",
"structure calculations",
"optoelectronic devices",
"device applications",
"alloy",
"electronic structure",
"Ge lattice",
"binary alloys",
"amorphous samples",
"Sn concentration",
"group IV elements",
"technological applications",
"experimental observations",
"approximation",
"defect studies",
"defect sites",
"model",
"symmetry",
"Sn atoms",
"lattice",
"new type",
"Sn",
"ideal candidate",
"applications",
"substitutional model",
"Si",
"calculations",
"critical concentration",
"tin",
"divacancies",
"nanoelectronics",
"nucleation",
"circuit",
"order",
"devices",
"atoms",
"Ge",
"Optos",
"materials",
"defects",
"configuration",
"account",
"concentration",
"structure",
"environment",
"segregation",
"observations",
"route",
"elements",
"formation",
"proposal",
"octahedral configuration",
"candidates",
"effect",
"types",
"samples",
"equivalent",
"center",
"immediate environment",
"study",
"sites",
"disorders",
"paper"
],
"name": "Non-substitutional Sn Defects in Ge1\u2212xSnx Alloys for Opto- and Nanoelectronics",
"pagination": "2213-2217",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028386943"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10948-011-1401-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10948-011-1401-4",
"https://app.dimensions.ai/details/publication/pub.1028386943"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_557.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10948-011-1401-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'
This table displays all metadata directly associated to this object as RDF triples.
171 TRIPLES
21 PREDICATES
100 URIs
90 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10948-011-1401-4 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | ″ | anzsrc-for:0204 |
4 | ″ | ″ | anzsrc-for:0206 |
5 | ″ | schema:author | Nbd4824cdec4948d3af12875c5b8094ce |
6 | ″ | schema:datePublished | 2012-01-03 |
7 | ″ | schema:datePublishedReg | 2012-01-03 |
8 | ″ | schema:description | Important technological applications are envisaged for Ge1−xSnx alloys. They provide a route to obtain direct-gap group IV materials, tuneable by concentration. Therefore, these alloys are ideal candidates for optoelectronic devices, highly compatible with Si integrated circuits. Contrary to other binary alloys with group IV elements, homogeneous Ge1−xSnx alloys, as required for device applications, have proven difficult to form above a certain temperature-dependent critical Sn concentration. Through a detailed ab-initio local defect study, and the proposal of a statistical model for the formation of these alloys, we predicted that a new type of Sn defect (β-Sn), consisting of a single Sn atom in the centre of a Ge divacancy, might be formed. The environment of this defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of white tin and its segregation, as found in amorphous samples. We confirmed that Sn would enter substitutionally in the Ge lattice, but above a temperature-dependent critical concentration, non-substitutional β-Sn defects should be formed, consistent with experimental observations.In this paper we introduce a two-site substitutional equivalent for the non-substitutional β-Sn defect in Ge, as needed in order to be able to include β-Sn in electronic structure calculations with effective-field electronic models for disorder, like the Virtual Crystal Approximation (VCA). The equivalent substitutional model is derived in order to take into account the different symmetries in the immediate environment of the substitutional α and non-substitutional β defect sites and their effect on the electronic structure. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N19e4f6c066cf4e6f919cc84e32f489dc |
13 | ″ | ″ | Nb9f189fcb0e04ad3b310836f05086b16 |
14 | ″ | ″ | sg:journal.1053198 |
15 | ″ | schema:keywords | Ge |
16 | ″ | ″ | Ge lattice |
17 | ″ | ″ | Optos |
18 | ″ | ″ | Si |
19 | ″ | ″ | Sn |
20 | ″ | ″ | Sn atoms |
21 | ″ | ″ | Sn concentration |
22 | ″ | ″ | Sn defects |
23 | ″ | ″ | account |
24 | ″ | ″ | alloy |
25 | ″ | ″ | amorphous samples |
26 | ″ | ″ | applications |
27 | ″ | ″ | approximation |
28 | ″ | ″ | atoms |
29 | ″ | ″ | binary alloys |
30 | ″ | ″ | calculations |
31 | ″ | ″ | candidates |
32 | ″ | ″ | center |
33 | ″ | ″ | circuit |
34 | ″ | ″ | concentration |
35 | ″ | ″ | configuration |
36 | ″ | ″ | critical concentration |
37 | ″ | ″ | crystal approximation |
38 | ″ | ″ | defect sites |
39 | ″ | ″ | defect studies |
40 | ″ | ″ | defects |
41 | ″ | ″ | device applications |
42 | ″ | ″ | devices |
43 | ″ | ″ | different symmetries |
44 | ″ | ″ | disorders |
45 | ″ | ″ | divacancies |
46 | ″ | ″ | effect |
47 | ″ | ″ | electronic model |
48 | ″ | ″ | electronic structure |
49 | ″ | ″ | electronic structure calculations |
50 | ″ | ″ | elements |
51 | ″ | ″ | environment |
52 | ″ | ″ | equivalent |
53 | ″ | ″ | experimental observations |
54 | ″ | ″ | formation |
55 | ″ | ″ | group IV elements |
56 | ″ | ″ | group IV materials |
57 | ″ | ″ | ideal candidate |
58 | ″ | ″ | immediate environment |
59 | ″ | ″ | important technological applications |
60 | ″ | ″ | lattice |
61 | ″ | ″ | materials |
62 | ″ | ″ | model |
63 | ″ | ″ | nanoelectronics |
64 | ″ | ″ | new type |
65 | ″ | ″ | nucleation |
66 | ″ | ″ | observations |
67 | ″ | ″ | octahedral configuration |
68 | ″ | ″ | optoelectronic devices |
69 | ″ | ″ | order |
70 | ″ | ″ | paper |
71 | ″ | ″ | proposal |
72 | ″ | ″ | route |
73 | ″ | ″ | samples |
74 | ″ | ″ | segregation |
75 | ″ | ″ | single Sn atoms |
76 | ″ | ″ | sites |
77 | ″ | ″ | statistical model |
78 | ″ | ″ | structure |
79 | ″ | ″ | structure calculations |
80 | ″ | ″ | study |
81 | ″ | ″ | substitutional model |
82 | ″ | ″ | symmetry |
83 | ″ | ″ | technological applications |
84 | ″ | ″ | tin |
85 | ″ | ″ | types |
86 | ″ | ″ | virtual crystal approximation |
87 | ″ | ″ | white tin |
88 | ″ | schema:name | Non-substitutional Sn Defects in Ge1−xSnx Alloys for Opto- and Nanoelectronics |
89 | ″ | schema:pagination | 2213-2217 |
90 | ″ | schema:productId | N09ef46586c674d7c8be1c58731723e75 |
91 | ″ | ″ | Nd32cd0bac0f24476a30f44994dd47470 |
92 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028386943 |
93 | ″ | ″ | https://doi.org/10.1007/s10948-011-1401-4 |
94 | ″ | schema:sdDatePublished | 2022-05-10T10:05 |
95 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
96 | ″ | schema:sdPublisher | Nf7745b1e783941e28542b8561caed79f |
97 | ″ | schema:url | https://doi.org/10.1007/s10948-011-1401-4 |
98 | ″ | sgo:license | sg:explorer/license/ |
99 | ″ | sgo:sdDataset | articles |
100 | ″ | rdf:type | schema:ScholarlyArticle |
101 | N09ef46586c674d7c8be1c58731723e75 | schema:name | doi |
102 | ″ | schema:value | 10.1007/s10948-011-1401-4 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | N19e4f6c066cf4e6f919cc84e32f489dc | schema:issueNumber | 6 |
105 | ″ | rdf:type | schema:PublicationIssue |
106 | N7c755b65fa2340be87b9a5f1c8b6ec6d | rdf:first | sg:person.0603665537.42 |
107 | ″ | rdf:rest | Nb7b813a627ff46de86aa9e5ea28a754b |
108 | N9e87c7ca56a647899f44738ef8d4d21e | rdf:first | sg:person.012456325153.04 |
109 | ″ | rdf:rest | N7c755b65fa2340be87b9a5f1c8b6ec6d |
110 | Nb7b813a627ff46de86aa9e5ea28a754b | rdf:first | sg:person.013253705553.09 |
111 | ″ | rdf:rest | rdf:nil |
112 | Nb9f189fcb0e04ad3b310836f05086b16 | schema:volumeNumber | 26 |
113 | ″ | rdf:type | schema:PublicationVolume |
114 | Nbd4824cdec4948d3af12875c5b8094ce | rdf:first | sg:person.01131270052.63 |
115 | ″ | rdf:rest | N9e87c7ca56a647899f44738ef8d4d21e |
116 | Nd32cd0bac0f24476a30f44994dd47470 | schema:name | dimensions_id |
117 | ″ | schema:value | pub.1028386943 |
118 | ″ | rdf:type | schema:PropertyValue |
119 | Nf7745b1e783941e28542b8561caed79f | schema:name | Springer Nature - SN SciGraph project |
120 | ″ | rdf:type | schema:Organization |
121 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Physical Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Condensed Matter Physics |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Quantum Physics |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | sg:journal.1053198 | schema:issn | 1557-1939 |
134 | ″ | ″ | 1557-1947 |
135 | ″ | schema:name | Journal of Superconductivity and Novel Magnetism |
136 | ″ | schema:publisher | Springer Nature |
137 | ″ | rdf:type | schema:Periodical |
138 | sg:person.01131270052.63 | schema:affiliation | grid-institutes:grid.9486.3 |
139 | ″ | schema:familyName | Barrio |
140 | ″ | schema:givenName | R. A. |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131270052.63 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.012456325153.04 | schema:affiliation | grid-institutes:grid.466813.e |
144 | ″ | schema:familyName | Querales Flores |
145 | ″ | schema:givenName | J. D. |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456325153.04 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.013253705553.09 | schema:affiliation | grid-institutes:grid.440499.4 |
149 | ″ | schema:familyName | Ventura |
150 | ″ | schema:givenName | C. I. |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013253705553.09 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.0603665537.42 | schema:affiliation | grid-institutes:grid.418211.f |
154 | ″ | schema:familyName | Fuhr |
155 | ″ | schema:givenName | J. D. |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603665537.42 |
157 | ″ | rdf:type | schema:Person |
158 | grid-institutes:grid.418211.f | schema:alternateName | Centro Atómico Bariloche, 8400, Bariloche, Argentina |
159 | ″ | schema:name | Centro Atómico Bariloche, 8400, Bariloche, Argentina |
160 | ″ | rdf:type | schema:Organization |
161 | grid-institutes:grid.440499.4 | schema:alternateName | Universidad Nacional de Río Negro, 8400, Bariloche, Argentina |
162 | ″ | schema:name | Centro Atómico Bariloche, 8400, Bariloche, Argentina |
163 | ″ | ″ | Universidad Nacional de Río Negro, 8400, Bariloche, Argentina |
164 | ″ | rdf:type | schema:Organization |
165 | grid-institutes:grid.466813.e | schema:alternateName | Instituto Balseiro, 8400, Bariloche, Argentina |
166 | ″ | schema:name | Centro Atómico Bariloche, 8400, Bariloche, Argentina |
167 | ″ | ″ | Instituto Balseiro, 8400, Bariloche, Argentina |
168 | ″ | rdf:type | schema:Organization |
169 | grid-institutes:grid.9486.3 | schema:alternateName | Instituto de Física, U.N.A.M., Apartado Postal 20-364, 01000, México D.F., Mexico |
170 | ″ | schema:name | Instituto de Física, U.N.A.M., Apartado Postal 20-364, 01000, México D.F., Mexico |
171 | ″ | rdf:type | schema:Organization |