Non-substitutional Sn Defects in Ge1−xSnx Alloys for Opto- and Nanoelectronics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01-03

AUTHORS

R. A. Barrio, J. D. Querales Flores, J. D. Fuhr, C. I. Ventura

ABSTRACT

Important technological applications are envisaged for Ge1−xSnx alloys. They provide a route to obtain direct-gap group IV materials, tuneable by concentration. Therefore, these alloys are ideal candidates for optoelectronic devices, highly compatible with Si integrated circuits. Contrary to other binary alloys with group IV elements, homogeneous Ge1−xSnx alloys, as required for device applications, have proven difficult to form above a certain temperature-dependent critical Sn concentration. Through a detailed ab-initio local defect study, and the proposal of a statistical model for the formation of these alloys, we predicted that a new type of Sn defect (β-Sn), consisting of a single Sn atom in the centre of a Ge divacancy, might be formed. The environment of this defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of white tin and its segregation, as found in amorphous samples. We confirmed that Sn would enter substitutionally in the Ge lattice, but above a temperature-dependent critical concentration, non-substitutional β-Sn defects should be formed, consistent with experimental observations.In this paper we introduce a two-site substitutional equivalent for the non-substitutional β-Sn defect in Ge, as needed in order to be able to include β-Sn in electronic structure calculations with effective-field electronic models for disorder, like the Virtual Crystal Approximation (VCA). The equivalent substitutional model is derived in order to take into account the different symmetries in the immediate environment of the substitutional α and non-substitutional β defect sites and their effect on the electronic structure. More... »

PAGES

2213-2217

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4

DOI

http://dx.doi.org/10.1007/s10948-011-1401-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028386943


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto de F\u00edsica, U.N.A.M., Apartado Postal 20-364, 01000, M\u00e9xico D.F., Mexico", 
          "id": "http://www.grid.ac/institutes/grid.9486.3", 
          "name": [
            "Instituto de F\u00edsica, U.N.A.M., Apartado Postal 20-364, 01000, M\u00e9xico D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barrio", 
        "givenName": "R. A.", 
        "id": "sg:person.01131270052.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131270052.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Balseiro, 8400, Bariloche, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.466813.e", 
          "name": [
            "Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina", 
            "Instituto Balseiro, 8400, Bariloche, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Querales Flores", 
        "givenName": "J. D.", 
        "id": "sg:person.012456325153.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456325153.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.418211.f", 
          "name": [
            "Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuhr", 
        "givenName": "J. D.", 
        "id": "sg:person.0603665537.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603665537.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Nacional de R\u00edo Negro, 8400, Bariloche, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.440499.4", 
          "name": [
            "Centro At\u00f3mico Bariloche, 8400, Bariloche, Argentina", 
            "Universidad Nacional de R\u00edo Negro, 8400, Bariloche, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ventura", 
        "givenName": "C. I.", 
        "id": "sg:person.013253705553.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013253705553.09"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-01-03", 
    "datePublishedReg": "2012-01-03", 
    "description": "Important technological applications are envisaged for Ge1\u2212xSnx alloys. They provide a route to obtain direct-gap group IV materials, tuneable by concentration. Therefore, these alloys are ideal candidates for optoelectronic devices, highly compatible with Si integrated circuits. Contrary to other binary alloys with group IV elements, homogeneous Ge1\u2212xSnx alloys, as required for device applications, have proven difficult to form above a certain temperature-dependent critical Sn concentration. Through a detailed ab-initio local defect study, and the proposal of a statistical model for the formation of these alloys, we predicted that a new type of Sn defect (\u03b2-Sn), consisting of a single Sn atom in the centre of a Ge divacancy, might be formed. The environment of this defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of white tin and its segregation, as found in amorphous samples. We confirmed that Sn would enter substitutionally in the Ge lattice, but above a temperature-dependent critical concentration, non-substitutional \u03b2-Sn defects should be formed, consistent with experimental observations.In this paper we introduce a two-site substitutional equivalent for the non-substitutional \u03b2-Sn defect in Ge, as needed in order to be able to include \u03b2-Sn in electronic structure calculations with effective-field electronic models for disorder, like the Virtual Crystal Approximation (VCA). The equivalent substitutional model is derived in order to take into account the different symmetries in the immediate environment of the substitutional \u03b1 and non-substitutional \u03b2 defect sites and their effect on the electronic structure.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10948-011-1401-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "virtual crystal approximation", 
      "statistical model", 
      "electronic structure calculations", 
      "white tin", 
      "single Sn atoms", 
      "group IV materials", 
      "Sn defects", 
      "different symmetries", 
      "important technological applications", 
      "crystal approximation", 
      "electronic model", 
      "structure calculations", 
      "optoelectronic devices", 
      "device applications", 
      "alloy", 
      "electronic structure", 
      "Ge lattice", 
      "binary alloys", 
      "amorphous samples", 
      "Sn concentration", 
      "group IV elements", 
      "technological applications", 
      "experimental observations", 
      "approximation", 
      "defect studies", 
      "defect sites", 
      "model", 
      "symmetry", 
      "Sn atoms", 
      "lattice", 
      "new type", 
      "Sn", 
      "ideal candidate", 
      "applications", 
      "substitutional model", 
      "Si", 
      "calculations", 
      "critical concentration", 
      "tin", 
      "divacancies", 
      "nanoelectronics", 
      "nucleation", 
      "circuit", 
      "order", 
      "devices", 
      "atoms", 
      "Ge", 
      "Optos", 
      "materials", 
      "defects", 
      "configuration", 
      "account", 
      "concentration", 
      "structure", 
      "environment", 
      "segregation", 
      "observations", 
      "route", 
      "elements", 
      "formation", 
      "proposal", 
      "octahedral configuration", 
      "candidates", 
      "effect", 
      "types", 
      "samples", 
      "equivalent", 
      "center", 
      "immediate environment", 
      "study", 
      "sites", 
      "disorders", 
      "paper"
    ], 
    "name": "Non-substitutional Sn Defects in Ge1\u2212xSnx Alloys for Opto- and Nanoelectronics", 
    "pagination": "2213-2217", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028386943"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-011-1401-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-011-1401-4", 
      "https://app.dimensions.ai/details/publication/pub.1028386943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_557.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10948-011-1401-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-011-1401-4'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      100 URIs      90 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-011-1401-4 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author Nbd4824cdec4948d3af12875c5b8094ce
6 schema:datePublished 2012-01-03
7 schema:datePublishedReg 2012-01-03
8 schema:description Important technological applications are envisaged for Ge1−xSnx alloys. They provide a route to obtain direct-gap group IV materials, tuneable by concentration. Therefore, these alloys are ideal candidates for optoelectronic devices, highly compatible with Si integrated circuits. Contrary to other binary alloys with group IV elements, homogeneous Ge1−xSnx alloys, as required for device applications, have proven difficult to form above a certain temperature-dependent critical Sn concentration. Through a detailed ab-initio local defect study, and the proposal of a statistical model for the formation of these alloys, we predicted that a new type of Sn defect (β-Sn), consisting of a single Sn atom in the centre of a Ge divacancy, might be formed. The environment of this defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of white tin and its segregation, as found in amorphous samples. We confirmed that Sn would enter substitutionally in the Ge lattice, but above a temperature-dependent critical concentration, non-substitutional β-Sn defects should be formed, consistent with experimental observations.In this paper we introduce a two-site substitutional equivalent for the non-substitutional β-Sn defect in Ge, as needed in order to be able to include β-Sn in electronic structure calculations with effective-field electronic models for disorder, like the Virtual Crystal Approximation (VCA). The equivalent substitutional model is derived in order to take into account the different symmetries in the immediate environment of the substitutional α and non-substitutional β defect sites and their effect on the electronic structure.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N19e4f6c066cf4e6f919cc84e32f489dc
13 Nb9f189fcb0e04ad3b310836f05086b16
14 sg:journal.1053198
15 schema:keywords Ge
16 Ge lattice
17 Optos
18 Si
19 Sn
20 Sn atoms
21 Sn concentration
22 Sn defects
23 account
24 alloy
25 amorphous samples
26 applications
27 approximation
28 atoms
29 binary alloys
30 calculations
31 candidates
32 center
33 circuit
34 concentration
35 configuration
36 critical concentration
37 crystal approximation
38 defect sites
39 defect studies
40 defects
41 device applications
42 devices
43 different symmetries
44 disorders
45 divacancies
46 effect
47 electronic model
48 electronic structure
49 electronic structure calculations
50 elements
51 environment
52 equivalent
53 experimental observations
54 formation
55 group IV elements
56 group IV materials
57 ideal candidate
58 immediate environment
59 important technological applications
60 lattice
61 materials
62 model
63 nanoelectronics
64 new type
65 nucleation
66 observations
67 octahedral configuration
68 optoelectronic devices
69 order
70 paper
71 proposal
72 route
73 samples
74 segregation
75 single Sn atoms
76 sites
77 statistical model
78 structure
79 structure calculations
80 study
81 substitutional model
82 symmetry
83 technological applications
84 tin
85 types
86 virtual crystal approximation
87 white tin
88 schema:name Non-substitutional Sn Defects in Ge1−xSnx Alloys for Opto- and Nanoelectronics
89 schema:pagination 2213-2217
90 schema:productId N09ef46586c674d7c8be1c58731723e75
91 Nd32cd0bac0f24476a30f44994dd47470
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386943
93 https://doi.org/10.1007/s10948-011-1401-4
94 schema:sdDatePublished 2022-05-10T10:05
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nf7745b1e783941e28542b8561caed79f
97 schema:url https://doi.org/10.1007/s10948-011-1401-4
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N09ef46586c674d7c8be1c58731723e75 schema:name doi
102 schema:value 10.1007/s10948-011-1401-4
103 rdf:type schema:PropertyValue
104 N19e4f6c066cf4e6f919cc84e32f489dc schema:issueNumber 6
105 rdf:type schema:PublicationIssue
106 N7c755b65fa2340be87b9a5f1c8b6ec6d rdf:first sg:person.0603665537.42
107 rdf:rest Nb7b813a627ff46de86aa9e5ea28a754b
108 N9e87c7ca56a647899f44738ef8d4d21e rdf:first sg:person.012456325153.04
109 rdf:rest N7c755b65fa2340be87b9a5f1c8b6ec6d
110 Nb7b813a627ff46de86aa9e5ea28a754b rdf:first sg:person.013253705553.09
111 rdf:rest rdf:nil
112 Nb9f189fcb0e04ad3b310836f05086b16 schema:volumeNumber 26
113 rdf:type schema:PublicationVolume
114 Nbd4824cdec4948d3af12875c5b8094ce rdf:first sg:person.01131270052.63
115 rdf:rest N9e87c7ca56a647899f44738ef8d4d21e
116 Nd32cd0bac0f24476a30f44994dd47470 schema:name dimensions_id
117 schema:value pub.1028386943
118 rdf:type schema:PropertyValue
119 Nf7745b1e783941e28542b8561caed79f schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
125 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
128 schema:name Condensed Matter Physics
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
131 schema:name Quantum Physics
132 rdf:type schema:DefinedTerm
133 sg:journal.1053198 schema:issn 1557-1939
134 1557-1947
135 schema:name Journal of Superconductivity and Novel Magnetism
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.01131270052.63 schema:affiliation grid-institutes:grid.9486.3
139 schema:familyName Barrio
140 schema:givenName R. A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131270052.63
142 rdf:type schema:Person
143 sg:person.012456325153.04 schema:affiliation grid-institutes:grid.466813.e
144 schema:familyName Querales Flores
145 schema:givenName J. D.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456325153.04
147 rdf:type schema:Person
148 sg:person.013253705553.09 schema:affiliation grid-institutes:grid.440499.4
149 schema:familyName Ventura
150 schema:givenName C. I.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013253705553.09
152 rdf:type schema:Person
153 sg:person.0603665537.42 schema:affiliation grid-institutes:grid.418211.f
154 schema:familyName Fuhr
155 schema:givenName J. D.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603665537.42
157 rdf:type schema:Person
158 grid-institutes:grid.418211.f schema:alternateName Centro Atómico Bariloche, 8400, Bariloche, Argentina
159 schema:name Centro Atómico Bariloche, 8400, Bariloche, Argentina
160 rdf:type schema:Organization
161 grid-institutes:grid.440499.4 schema:alternateName Universidad Nacional de Río Negro, 8400, Bariloche, Argentina
162 schema:name Centro Atómico Bariloche, 8400, Bariloche, Argentina
163 Universidad Nacional de Río Negro, 8400, Bariloche, Argentina
164 rdf:type schema:Organization
165 grid-institutes:grid.466813.e schema:alternateName Instituto Balseiro, 8400, Bariloche, Argentina
166 schema:name Centro Atómico Bariloche, 8400, Bariloche, Argentina
167 Instituto Balseiro, 8400, Bariloche, Argentina
168 rdf:type schema:Organization
169 grid-institutes:grid.9486.3 schema:alternateName Instituto de Física, U.N.A.M., Apartado Postal 20-364, 01000, México D.F., Mexico
170 schema:name Instituto de Física, U.N.A.M., Apartado Postal 20-364, 01000, México D.F., Mexico
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...