Effect of f Electron Excitations in Heavy Fermion and Unconventional Superconductors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01

AUTHORS

P. Thalmeier

ABSTRACT

The low energy crystalline electric field (CEF) excitations of f electrons can play a twofold role in heavy fermion and unconventional superconductors. They may act as a glue for the formation of Cooper pairs and simultaneously as a probe to investigate the symmetry of the order parameter. The former has been found in the skutterudite heavy fermion compound PrOs4Sb12, where a singlet–triplet CEF excitation Δ contributes to the pair formation and enhances Tc with respect to L aOs4Sb12. In substituted P r(Os1−xRux)4Sb12, a continuous increase of Δ leads to a crossing with the local Pr rattling phonon mode and vibronic mode formation caused by magnetoelastic interaction. Furthermore, the Tc enhancement turns into a reduction. It is proposed that this signifies a crossover from mainly pair-forming aspherical Coulomb to pair-breaking dipolar exchange scattering with increasing Ru content. In the Ce-based Fe pnictides CEF transitions show anomalous temperature dependence of the line width due to a pronounced feedback effect, which gives direct evidence for the unconventional 3d superconductivity. More... »

PAGES

413-416

References to SciGraph publications

  • 1970-04. Superconductors containing impurities with crystal-field split energy levels in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10948-010-0949-8

    DOI

    http://dx.doi.org/10.1007/s10948-010-0949-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024795266


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
              "id": "https://www.grid.ac/institutes/grid.419507.e", 
              "name": [
                "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thalmeier", 
            "givenName": "P.", 
            "id": "sg:person.015501240375.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/1742-6596/200/1/012125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001018171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.100504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012243779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.80.100504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012243779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.107003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028197072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.107003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028197072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.140509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040765310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.78.140509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040765310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.157003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041059101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.157003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041059101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.107006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047103772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.107006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047103772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.220510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051216056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.76.220510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051216056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01394623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051657574", 
              "https://doi.org/10.1007/bf01394623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.69.024523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051928274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.69.024523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051928274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.184503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060624885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.77.184503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060624885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.73.2257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063121305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.73.3453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063121539"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01", 
        "datePublishedReg": "2011-01-01", 
        "description": "The low energy crystalline electric field (CEF) excitations of f electrons can play a twofold role in heavy fermion and unconventional superconductors. They may act as a glue for the formation of Cooper pairs and simultaneously as a probe to investigate the symmetry of the order parameter. The former has been found in the skutterudite heavy fermion compound PrOs4Sb12, where a singlet\u2013triplet CEF excitation \u0394 contributes to the pair formation and enhances Tc with respect to L aOs4Sb12. In substituted P r(Os1\u2212xRux)4Sb12, a continuous increase of \u0394 leads to a crossing with the local Pr rattling phonon mode and vibronic mode formation caused by magnetoelastic interaction. Furthermore, the Tc enhancement turns into a reduction. It is proposed that this signifies a crossover from mainly pair-forming aspherical Coulomb to pair-breaking dipolar exchange scattering with increasing Ru content. In the Ce-based Fe pnictides CEF transitions show anomalous temperature dependence of the line width due to a pronounced feedback effect, which gives direct evidence for the unconventional 3d superconductivity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10948-010-0949-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053198", 
            "issn": [
              "1557-1939", 
              "1557-1947"
            ], 
            "name": "Journal of Superconductivity and Novel Magnetism", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "name": "Effect of f Electron Excitations in Heavy Fermion and Unconventional Superconductors", 
        "pagination": "413-416", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "761ff1ff5c9eefe280e525447a86c2a42a2147308170d466882404742058fcea"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10948-010-0949-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024795266"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10948-010-0949-8", 
          "https://app.dimensions.ai/details/publication/pub.1024795266"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10948-010-0949-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-010-0949-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-010-0949-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-010-0949-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-010-0949-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10948-010-0949-8 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nfe09263c50244b6d80917aa6d6864ae9
    4 schema:citation sg:pub.10.1007/bf01394623
    5 https://doi.org/10.1088/1742-6596/200/1/012125
    6 https://doi.org/10.1103/physrevb.69.024523
    7 https://doi.org/10.1103/physrevb.76.220510
    8 https://doi.org/10.1103/physrevb.77.184503
    9 https://doi.org/10.1103/physrevb.78.140509
    10 https://doi.org/10.1103/physrevb.80.100504
    11 https://doi.org/10.1103/physrevlett.102.107006
    12 https://doi.org/10.1103/physrevlett.93.157003
    13 https://doi.org/10.1103/physrevlett.95.107003
    14 https://doi.org/10.1143/jpsj.73.2257
    15 https://doi.org/10.1143/jpsj.73.3453
    16 schema:datePublished 2011-01
    17 schema:datePublishedReg 2011-01-01
    18 schema:description The low energy crystalline electric field (CEF) excitations of f electrons can play a twofold role in heavy fermion and unconventional superconductors. They may act as a glue for the formation of Cooper pairs and simultaneously as a probe to investigate the symmetry of the order parameter. The former has been found in the skutterudite heavy fermion compound PrOs4Sb12, where a singlet–triplet CEF excitation Δ contributes to the pair formation and enhances Tc with respect to L aOs4Sb12. In substituted P r(Os1−xRux)4Sb12, a continuous increase of Δ leads to a crossing with the local Pr rattling phonon mode and vibronic mode formation caused by magnetoelastic interaction. Furthermore, the Tc enhancement turns into a reduction. It is proposed that this signifies a crossover from mainly pair-forming aspherical Coulomb to pair-breaking dipolar exchange scattering with increasing Ru content. In the Ce-based Fe pnictides CEF transitions show anomalous temperature dependence of the line width due to a pronounced feedback effect, which gives direct evidence for the unconventional 3d superconductivity.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N11ebb87782e64740a39aa2764f264341
    23 N2ee377e9ff5b4986829d547bdc6c0583
    24 sg:journal.1053198
    25 schema:name Effect of f Electron Excitations in Heavy Fermion and Unconventional Superconductors
    26 schema:pagination 413-416
    27 schema:productId N49c46ec9106842a995ad9a2799ec850f
    28 N926902dc25b94bd3b3ff6cf4d7e41d2a
    29 Nca0742400d824083bd57049cf2f3669d
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024795266
    31 https://doi.org/10.1007/s10948-010-0949-8
    32 schema:sdDatePublished 2019-04-10T18:20
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Ne09a883b245c4c38a3c1eee2b2b0fae5
    35 schema:url http://link.springer.com/10.1007%2Fs10948-010-0949-8
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N11ebb87782e64740a39aa2764f264341 schema:volumeNumber 24
    40 rdf:type schema:PublicationVolume
    41 N2ee377e9ff5b4986829d547bdc6c0583 schema:issueNumber 1-2
    42 rdf:type schema:PublicationIssue
    43 N49c46ec9106842a995ad9a2799ec850f schema:name readcube_id
    44 schema:value 761ff1ff5c9eefe280e525447a86c2a42a2147308170d466882404742058fcea
    45 rdf:type schema:PropertyValue
    46 N926902dc25b94bd3b3ff6cf4d7e41d2a schema:name dimensions_id
    47 schema:value pub.1024795266
    48 rdf:type schema:PropertyValue
    49 Nca0742400d824083bd57049cf2f3669d schema:name doi
    50 schema:value 10.1007/s10948-010-0949-8
    51 rdf:type schema:PropertyValue
    52 Ne09a883b245c4c38a3c1eee2b2b0fae5 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 Nfe09263c50244b6d80917aa6d6864ae9 rdf:first sg:person.015501240375.83
    55 rdf:rest rdf:nil
    56 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Engineering
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Materials Engineering
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1053198 schema:issn 1557-1939
    63 1557-1947
    64 schema:name Journal of Superconductivity and Novel Magnetism
    65 rdf:type schema:Periodical
    66 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
    67 schema:familyName Thalmeier
    68 schema:givenName P.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
    70 rdf:type schema:Person
    71 sg:pub.10.1007/bf01394623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051657574
    72 https://doi.org/10.1007/bf01394623
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1088/1742-6596/200/1/012125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001018171
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1103/physrevb.69.024523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051928274
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1103/physrevb.76.220510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051216056
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1103/physrevb.77.184503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060624885
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1103/physrevb.78.140509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040765310
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1103/physrevb.80.100504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012243779
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1103/physrevlett.102.107006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047103772
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1103/physrevlett.93.157003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041059101
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1103/physrevlett.95.107003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028197072
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1143/jpsj.73.2257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063121305
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1143/jpsj.73.3453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063121539
    95 rdf:type schema:CreativeWork
    96 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
    97 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...