Feedback Spin Exciton Formation in Unconventional Superconductors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-07

AUTHORS

P. Thalmeier, I. Eremin, A. Akbari, P. Fulde

ABSTRACT

The superconducting feedback resonance in inelastic neutron scattering (INS) has now been found in numerous unconventional superconductors of the cuprate, ferropnictide, and heavy fermion classes. The collective spin excitation appears below Tc at an energy less than the quasiparticle threshold with momentum Q provided the gap changes sign under translation by Q. The resonance has been found in the heavy fermion (HF) superconductors CeCu2Si2, CeCoIn5, and UPd2Al3, and recently in Fe-pnictide Ba1−xKxFe2As2, BaFe2−xCoxAs2, BaFe2−xNixAs2, and FeSe1−xTex compounds and may be a more general phenomenon. Of particular interest is the interaction of the 3d spin exciton with the 4f crystalline electric field (CEF) excitations in rare earth based unconventional superconductors like CeFeAsO1−xFx pnictide and Nd2−xCexCuO4 cuprate where a coupling between 3d spin resonance and 4f CEF excitations leads to intriguing interaction effects observed experimentally by INS. More... »

PAGES

729-732

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10948-010-0646-7

DOI

http://dx.doi.org/10.1007/s10948-010-0646-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023222876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "P.", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "I.", 
        "id": "sg:person.01225057662.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225057662.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akbari", 
        "givenName": "A.", 
        "id": "sg:person.07603456351.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603456351.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fulde", 
        "givenName": "P.", 
        "id": "sg:person.01361640143.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361640143.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physb.2007.10.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000653263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.057002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003442052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.057002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003442052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.100504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012243779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.100504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012243779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017307748", 
          "https://doi.org/10.1038/nphys1426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017307748", 
          "https://doi.org/10.1038/nphys1426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.024503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021653906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.024503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021653906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35066519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021983037", 
          "https://doi.org/10.1038/35066519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35066519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021983037", 
          "https://doi.org/10.1038/35066519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023807508", 
          "https://doi.org/10.1038/nature07625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.107005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025744436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.107005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025744436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.087001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029099212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.087001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029099212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/3/l02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039831635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040765310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040765310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046812498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046812498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.107006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047103772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.107006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047103772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.067008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049981356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.067008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049981356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.217002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052018903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.217002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052018903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.134514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.134514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627946"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "The superconducting feedback resonance in inelastic neutron scattering (INS) has now been found in numerous unconventional superconductors of the cuprate, ferropnictide, and heavy fermion classes. The collective spin excitation appears below Tc at an energy less than the quasiparticle threshold with momentum Q provided the gap changes sign under translation by Q. The resonance has been found in the heavy fermion (HF) superconductors CeCu2Si2, CeCoIn5, and UPd2Al3, and recently in Fe-pnictide Ba1\u2212xKxFe2As2, BaFe2\u2212xCoxAs2, BaFe2\u2212xNixAs2, and FeSe1\u2212xTex compounds and may be a more general phenomenon. Of particular interest is the interaction of the 3d spin exciton with the 4f crystalline electric field (CEF) excitations in rare earth based unconventional superconductors like CeFeAsO1\u2212xFx pnictide and Nd2\u2212xCexCuO4 cuprate where a coupling between 3d spin resonance and 4f CEF excitations leads to intriguing interaction effects observed experimentally by INS.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10948-010-0646-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053198", 
        "issn": [
          "1557-1939", 
          "1557-1947"
        ], 
        "name": "Journal of Superconductivity and Novel Magnetism", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Feedback Spin Exciton Formation in Unconventional Superconductors", 
    "pagination": "729-732", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ea3a05621407aa7e7d64b73cab89ae728f564dfbc7c63beaacf95b121c7118c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10948-010-0646-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023222876"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10948-010-0646-7", 
      "https://app.dimensions.ai/details/publication/pub.1023222876"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89785_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10948-010-0646-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10948-010-0646-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10948-010-0646-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10948-010-0646-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10948-010-0646-7'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10948-010-0646-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne99d29051ab543d78353fade5fb91b9c
4 schema:citation sg:pub.10.1038/35066519
5 sg:pub.10.1038/nature07625
6 sg:pub.10.1038/nphys1426
7 https://doi.org/10.1016/j.physb.2007.10.110
8 https://doi.org/10.1088/0953-8984/16/3/l02
9 https://doi.org/10.1103/physrevb.75.024503
10 https://doi.org/10.1103/physrevb.78.140509
11 https://doi.org/10.1103/physrevb.79.134514
12 https://doi.org/10.1103/physrevb.80.100504
13 https://doi.org/10.1103/physrevlett.100.087001
14 https://doi.org/10.1103/physrevlett.101.187001
15 https://doi.org/10.1103/physrevlett.101.217002
16 https://doi.org/10.1103/physrevlett.102.107005
17 https://doi.org/10.1103/physrevlett.102.107006
18 https://doi.org/10.1103/physrevlett.103.067008
19 https://doi.org/10.1103/physrevlett.87.057002
20 schema:datePublished 2010-07
21 schema:datePublishedReg 2010-07-01
22 schema:description The superconducting feedback resonance in inelastic neutron scattering (INS) has now been found in numerous unconventional superconductors of the cuprate, ferropnictide, and heavy fermion classes. The collective spin excitation appears below Tc at an energy less than the quasiparticle threshold with momentum Q provided the gap changes sign under translation by Q. The resonance has been found in the heavy fermion (HF) superconductors CeCu2Si2, CeCoIn5, and UPd2Al3, and recently in Fe-pnictide Ba1−xKxFe2As2, BaFe2−xCoxAs2, BaFe2−xNixAs2, and FeSe1−xTex compounds and may be a more general phenomenon. Of particular interest is the interaction of the 3d spin exciton with the 4f crystalline electric field (CEF) excitations in rare earth based unconventional superconductors like CeFeAsO1−xFx pnictide and Nd2−xCexCuO4 cuprate where a coupling between 3d spin resonance and 4f CEF excitations leads to intriguing interaction effects observed experimentally by INS.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N7edebd8e1dc747c9b702af352a693d09
27 Nf5c1f98100d44e4caf83d00de654a7ec
28 sg:journal.1053198
29 schema:name Feedback Spin Exciton Formation in Unconventional Superconductors
30 schema:pagination 729-732
31 schema:productId N1d44b041b0a84f549826e24facb6c664
32 N41e8d9eb236c46ce8008cb169a640f5f
33 N9b024aa4f0a04024ba1fa0817766bf14
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023222876
35 https://doi.org/10.1007/s10948-010-0646-7
36 schema:sdDatePublished 2019-04-11T09:49
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ne2a7be211fc343db9d56f68ac0847e69
39 schema:url http://link.springer.com/10.1007%2Fs10948-010-0646-7
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0dfafb79a82b414ab312fd85a2131deb rdf:first sg:person.01225057662.75
44 rdf:rest Nbae9b1f29ce5434abec082a168ec6573
45 N1d44b041b0a84f549826e24facb6c664 schema:name dimensions_id
46 schema:value pub.1023222876
47 rdf:type schema:PropertyValue
48 N41e8d9eb236c46ce8008cb169a640f5f schema:name doi
49 schema:value 10.1007/s10948-010-0646-7
50 rdf:type schema:PropertyValue
51 N7edebd8e1dc747c9b702af352a693d09 schema:volumeNumber 23
52 rdf:type schema:PublicationVolume
53 N9b024aa4f0a04024ba1fa0817766bf14 schema:name readcube_id
54 schema:value 6ea3a05621407aa7e7d64b73cab89ae728f564dfbc7c63beaacf95b121c7118c
55 rdf:type schema:PropertyValue
56 Nbae9b1f29ce5434abec082a168ec6573 rdf:first sg:person.07603456351.53
57 rdf:rest Ne607faaedf6e4d2e9f9f6ce42734257c
58 Ne2a7be211fc343db9d56f68ac0847e69 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Ne607faaedf6e4d2e9f9f6ce42734257c rdf:first sg:person.01361640143.98
61 rdf:rest rdf:nil
62 Ne99d29051ab543d78353fade5fb91b9c rdf:first sg:person.015501240375.83
63 rdf:rest N0dfafb79a82b414ab312fd85a2131deb
64 Nf5c1f98100d44e4caf83d00de654a7ec schema:issueNumber 5
65 rdf:type schema:PublicationIssue
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
70 schema:name Materials Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1053198 schema:issn 1557-1939
73 1557-1947
74 schema:name Journal of Superconductivity and Novel Magnetism
75 rdf:type schema:Periodical
76 sg:person.01225057662.75 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
77 schema:familyName Eremin
78 schema:givenName I.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225057662.75
80 rdf:type schema:Person
81 sg:person.01361640143.98 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
82 schema:familyName Fulde
83 schema:givenName P.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361640143.98
85 rdf:type schema:Person
86 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
87 schema:familyName Thalmeier
88 schema:givenName P.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
90 rdf:type schema:Person
91 sg:person.07603456351.53 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
92 schema:familyName Akbari
93 schema:givenName A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603456351.53
95 rdf:type schema:Person
96 sg:pub.10.1038/35066519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021983037
97 https://doi.org/10.1038/35066519
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/nature07625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023807508
100 https://doi.org/10.1038/nature07625
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nphys1426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017307748
103 https://doi.org/10.1038/nphys1426
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.physb.2007.10.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000653263
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1088/0953-8984/16/3/l02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039831635
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.75.024503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021653906
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.78.140509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040765310
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.79.134514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627946
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevb.80.100504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012243779
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.100.087001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029099212
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.101.187001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046812498
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.101.217002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052018903
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.102.107005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025744436
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevlett.102.107006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047103772
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.103.067008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049981356
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.87.057002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003442052
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
132 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
135 schema:name Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...