One-pot synthesis of IM-5 zeolite View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Xiangfei Ji, Hui Jia, Yaoyao Wang, Xiaofeng Yang

ABSTRACT

IM-5 zeolite is synthesized in solutions of sodium hydroxide, sodium aluminate, and silica gel, along with N-methyl pyrrolidine and 1,5-dibromopentane by one-pot hydrothermal method. The method described in this paper is more convenient and environmentally benign than the conventional one, in which 1,5-bis (methylpyrrolidinium) pentane bromide is used as structure directing agent, because it eliminates the complex and toxic synthesis process of the agent. The influences of synthesis variables including OH−/SiO2 ratio, H2O/SiO2 ratio, temperature, seed content, and crystallization time on the synthesis of IM-5 zeolite are studied with X-ray powder diffraction, field emission scanning electron microscopy and nitrogen adsorption characterization techniques. The experiments show that analcime and mordenite are the two impurity phases that compete with IM-5 zeolite in synthesis process and the alkalinity of solution, temperature, and the crystallization time are three key factors that affect the crystal phase of products. A tentative explanation for the mechanism of the crystal phase dependence on the synthesis variables is given. By carefully choosing synthesis conditions along with using seed, the crystallization time of synthesizing IM-5 zeolite has been greatly reduced. More... »

PAGES

343-351

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10934-018-0606-3

DOI

http://dx.doi.org/10.1007/s10934-018-0606-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101901455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ji", 
        "givenName": "Xiangfei", 
        "id": "sg:person.01245460661.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245460661.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Hui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yaoyao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North University of China", 
          "id": "https://www.grid.ac/institutes/grid.440581.c", 
          "name": [
            "Department of Physics, North University of China, 030051, Taiyuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xiaofeng", 
        "id": "sg:person.01361707261.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361707261.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jcat.2001.3469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004946330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ra08211d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007086230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01614948909351349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011462016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2005.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019609386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9517(02)00178-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020957235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9517(02)00178-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020957235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/revce-2013-0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024873252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2013.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024905551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2109/jcersj2.15317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027834131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11244-010-9591-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028733119", 
          "https://doi.org/10.1007/s11244-010-9591-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11244-010-9591-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028733119", 
          "https://doi.org/10.1007/s11244-010-9591-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2011.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031382096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2016.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033440010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5404.958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044708910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2013.02.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045546766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2011.11.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049707509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2012.06.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050517577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0023158413040083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053420575", 
          "https://doi.org/10.1134/s0023158413040083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr800495t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054077253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr800495t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054077253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm00022a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055406585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm00036a019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055407097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7dt00644f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090346775"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "IM-5 zeolite is synthesized in solutions of sodium hydroxide, sodium aluminate, and silica gel, along with N-methyl pyrrolidine and 1,5-dibromopentane by one-pot hydrothermal method. The method described in this paper is more convenient and environmentally benign than the conventional one, in which 1,5-bis (methylpyrrolidinium) pentane bromide is used as structure directing agent, because it eliminates the complex and toxic synthesis process of the agent. The influences of synthesis variables including OH\u2212/SiO2 ratio, H2O/SiO2 ratio, temperature, seed content, and crystallization time on the synthesis of IM-5 zeolite are studied with X-ray powder diffraction, field emission scanning electron microscopy and nitrogen adsorption characterization techniques. The experiments show that analcime and mordenite are the two impurity phases that compete with IM-5 zeolite in synthesis process and the alkalinity of solution, temperature, and the crystallization time are three key factors that affect the crystal phase of products. A tentative explanation for the mechanism of the crystal phase dependence on the synthesis variables is given. By carefully choosing synthesis conditions along with using seed, the crystallization time of synthesizing IM-5 zeolite has been greatly reduced.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10934-018-0606-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136407", 
        "issn": [
          "1380-2224", 
          "1573-4854"
        ], 
        "name": "Journal of Porous Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "One-pot synthesis of IM-5 zeolite", 
    "pagination": "343-351", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f89c7e6c55ffc3dc9dcd0c3d8e00ef40091185e2de13e1afac6f0fb8d9e0a69a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10934-018-0606-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101901455"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10934-018-0606-3", 
      "https://app.dimensions.ai/details/publication/pub.1101901455"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10934-018-0606-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10934-018-0606-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10934-018-0606-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10934-018-0606-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10934-018-0606-3'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10934-018-0606-3 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nd08932ab44df4c768311af37a0bd250d
4 schema:citation sg:pub.10.1007/s11244-010-9591-8
5 sg:pub.10.1134/s0023158413040083
6 https://doi.org/10.1006/jcat.2001.3469
7 https://doi.org/10.1016/j.apcata.2013.02.030
8 https://doi.org/10.1016/j.cej.2016.08.019
9 https://doi.org/10.1016/j.jcat.2011.01.019
10 https://doi.org/10.1016/j.jcat.2013.10.017
11 https://doi.org/10.1016/j.matlet.2011.11.073
12 https://doi.org/10.1016/j.micromeso.2005.02.016
13 https://doi.org/10.1016/j.micromeso.2012.06.032
14 https://doi.org/10.1016/s0021-9517(02)00178-1
15 https://doi.org/10.1021/cm00022a005
16 https://doi.org/10.1021/cm00036a019
17 https://doi.org/10.1021/cr800495t
18 https://doi.org/10.1039/c6ra08211d
19 https://doi.org/10.1039/c7dt00644f
20 https://doi.org/10.1080/01614948909351349
21 https://doi.org/10.1126/science.1137920
22 https://doi.org/10.1126/science.283.5404.958
23 https://doi.org/10.1515/revce-2013-0020
24 https://doi.org/10.2109/jcersj2.15317
25 schema:datePublished 2019-04
26 schema:datePublishedReg 2019-04-01
27 schema:description IM-5 zeolite is synthesized in solutions of sodium hydroxide, sodium aluminate, and silica gel, along with N-methyl pyrrolidine and 1,5-dibromopentane by one-pot hydrothermal method. The method described in this paper is more convenient and environmentally benign than the conventional one, in which 1,5-bis (methylpyrrolidinium) pentane bromide is used as structure directing agent, because it eliminates the complex and toxic synthesis process of the agent. The influences of synthesis variables including OH−/SiO2 ratio, H2O/SiO2 ratio, temperature, seed content, and crystallization time on the synthesis of IM-5 zeolite are studied with X-ray powder diffraction, field emission scanning electron microscopy and nitrogen adsorption characterization techniques. The experiments show that analcime and mordenite are the two impurity phases that compete with IM-5 zeolite in synthesis process and the alkalinity of solution, temperature, and the crystallization time are three key factors that affect the crystal phase of products. A tentative explanation for the mechanism of the crystal phase dependence on the synthesis variables is given. By carefully choosing synthesis conditions along with using seed, the crystallization time of synthesizing IM-5 zeolite has been greatly reduced.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N0d5a24dcaa1c485ab4762c0a71dbdd34
32 N9c6d245ebfe3482584ba6440822a0ee7
33 sg:journal.1136407
34 schema:name One-pot synthesis of IM-5 zeolite
35 schema:pagination 343-351
36 schema:productId N3dbe9a3fa4ca4903a0806e2408c6a34e
37 N9d1ab390a1b54b6987b949ece0d032e9
38 Nc9f31497af0b460995598fcd1d10f0b5
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101901455
40 https://doi.org/10.1007/s10934-018-0606-3
41 schema:sdDatePublished 2019-04-11T13:56
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nc48542143410441eb980804c468b4d19
44 schema:url https://link.springer.com/10.1007%2Fs10934-018-0606-3
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N04601cb3a1004de68d48e70b97a2ca86 rdf:first Nc5e75bde77b5406b9435cf77d1914fc6
49 rdf:rest Nb9be689c8388475989eea96894154f61
50 N0d5a24dcaa1c485ab4762c0a71dbdd34 schema:volumeNumber 26
51 rdf:type schema:PublicationVolume
52 N3dbe9a3fa4ca4903a0806e2408c6a34e schema:name doi
53 schema:value 10.1007/s10934-018-0606-3
54 rdf:type schema:PropertyValue
55 N70438198d5f14892b1770d73d64611a9 rdf:first Nbc8abe1e824d43eaadab642ed2d690f2
56 rdf:rest N04601cb3a1004de68d48e70b97a2ca86
57 N9c6d245ebfe3482584ba6440822a0ee7 schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 N9d1ab390a1b54b6987b949ece0d032e9 schema:name dimensions_id
60 schema:value pub.1101901455
61 rdf:type schema:PropertyValue
62 Nb9be689c8388475989eea96894154f61 rdf:first sg:person.01361707261.25
63 rdf:rest rdf:nil
64 Nbc8abe1e824d43eaadab642ed2d690f2 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
65 schema:familyName Jia
66 schema:givenName Hui
67 rdf:type schema:Person
68 Nc48542143410441eb980804c468b4d19 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nc5e75bde77b5406b9435cf77d1914fc6 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
71 schema:familyName Wang
72 schema:givenName Yaoyao
73 rdf:type schema:Person
74 Nc9f31497af0b460995598fcd1d10f0b5 schema:name readcube_id
75 schema:value f89c7e6c55ffc3dc9dcd0c3d8e00ef40091185e2de13e1afac6f0fb8d9e0a69a
76 rdf:type schema:PropertyValue
77 Nd08932ab44df4c768311af37a0bd250d rdf:first sg:person.01245460661.40
78 rdf:rest N70438198d5f14892b1770d73d64611a9
79 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
80 schema:name Chemical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Chemistry (incl. Structural)
84 rdf:type schema:DefinedTerm
85 sg:journal.1136407 schema:issn 1380-2224
86 1573-4854
87 schema:name Journal of Porous Materials
88 rdf:type schema:Periodical
89 sg:person.01245460661.40 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
90 schema:familyName Ji
91 schema:givenName Xiangfei
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245460661.40
93 rdf:type schema:Person
94 sg:person.01361707261.25 schema:affiliation https://www.grid.ac/institutes/grid.440581.c
95 schema:familyName Yang
96 schema:givenName Xiaofeng
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361707261.25
98 rdf:type schema:Person
99 sg:pub.10.1007/s11244-010-9591-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028733119
100 https://doi.org/10.1007/s11244-010-9591-8
101 rdf:type schema:CreativeWork
102 sg:pub.10.1134/s0023158413040083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053420575
103 https://doi.org/10.1134/s0023158413040083
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1006/jcat.2001.3469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004946330
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.apcata.2013.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045546766
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.cej.2016.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033440010
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jcat.2011.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031382096
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jcat.2013.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024905551
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.matlet.2011.11.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049707509
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.micromeso.2005.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019609386
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.micromeso.2012.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050517577
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0021-9517(02)00178-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020957235
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/cm00022a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055406585
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/cm00036a019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055407097
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/cr800495t schema:sameAs https://app.dimensions.ai/details/publication/pub.1054077253
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1039/c6ra08211d schema:sameAs https://app.dimensions.ai/details/publication/pub.1007086230
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1039/c7dt00644f schema:sameAs https://app.dimensions.ai/details/publication/pub.1090346775
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/01614948909351349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011462016
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1126/science.1137920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455158
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.283.5404.958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044708910
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1515/revce-2013-0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024873252
140 rdf:type schema:CreativeWork
141 https://doi.org/10.2109/jcersj2.15317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027834131
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.163032.5 schema:alternateName Shanxi University
144 schema:name School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.440581.c schema:alternateName North University of China
147 schema:name Department of Physics, North University of China, 030051, Taiyuan, China
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...