Photocatalytic decomposition of 2-propanol and acetone in air by nanocomposites of pre-formed TiO2 particles and mesoporous silica View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10-18

AUTHORS

Hiroyuki Sakai, Yuji Kubota, Kosuke Yamaguchi, Hiroshi Fukuoka, Kei Inumaru

ABSTRACT

The photocatalytic efficiency in the degradations of gaseous 2-propanol and acetone has been studied on nanocomposite materials prepared by embedding well-crystallized titanium dioxide (TiO2) particles (Degussa P25) into surfactant-templated mesoporous silica. The composite materials adsorbed the organic substances considerably in dark conditions and decomposed them completely to CO2 under photoirradiation. The efficiency was influenced remarkably by the surface modification of TiO2 particles. According to the transmission electron microscope observations, using carbon-coated TiO2 particles gave a composite MCT-C with well-ordered channels of the mesoporous silica, but not all the TiO2 particles were embedded in silica. MCT-C showed a high CO2 production rate comparable to that of pristine TiO2 (P25) when the concentrations of gaseous 2-propanol and acetone were as low as several ppm. On the other hand, using n-octadecyl-grafted TiO2 particles resulted in a composite MCT-S in which most of the TiO2 particles were well embedded in mesoporous silica, but the degree of channel-ordering was comparatively lower than that in MCT-C. The CO2 production rate for MCT-S was lower than that for P25. This is probably due to the deactivation of TiO2 surface by the silane-coupling reagent and/or the disorder of the mesopore channels. These composite photocatalysts could suppress the emission of unhealthy degradation products by adsorptive capacity of mesoporous silica. More... »

PAGES

693-699

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10934-012-9643-5

DOI

http://dx.doi.org/10.1007/s10934-012-9643-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041551696


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan", 
          "id": "http://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakai", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.010107113731.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010107113731.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan", 
          "id": "http://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubota", 
        "givenName": "Yuji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan", 
          "id": "http://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamaguchi", 
        "givenName": "Kosuke", 
        "id": "sg:person.010621463307.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010621463307.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan", 
          "id": "http://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuoka", 
        "givenName": "Hiroshi", 
        "id": "sg:person.011757233321.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757233321.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan", 
          "id": "http://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inumaru", 
        "givenName": "Kei", 
        "id": "sg:person.013441371131.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013441371131.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00806579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035086534", 
          "https://doi.org/10.1007/bf00806579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/41233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025007901", 
          "https://doi.org/10.1038/41233"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10-18", 
    "datePublishedReg": "2012-10-18", 
    "description": "The photocatalytic efficiency in the degradations of gaseous 2-propanol and acetone has been studied on nanocomposite materials prepared by embedding well-crystallized titanium dioxide (TiO2) particles (Degussa P25) into surfactant-templated mesoporous silica. The composite materials adsorbed the organic substances considerably in dark conditions and decomposed them completely to CO2 under photoirradiation. The efficiency was influenced remarkably by the surface modification of TiO2 particles. According to the transmission electron microscope observations, using carbon-coated TiO2 particles gave a composite MCT-C with well-ordered channels of the mesoporous silica, but not all the TiO2 particles were embedded in silica. MCT-C showed a high CO2 production rate comparable to that of pristine TiO2 (P25) when the concentrations of gaseous 2-propanol and acetone were as low as several ppm. On the other hand, using n-octadecyl-grafted TiO2 particles resulted in a composite MCT-S in which most of the TiO2 particles were well embedded in mesoporous silica, but the degree of channel-ordering was comparatively lower than that in MCT-C. The CO2 production rate for MCT-S was lower than that for P25. This is probably due to the deactivation of TiO2 surface by the silane-coupling reagent and/or the disorder of the mesopore channels. These composite photocatalysts could suppress the emission of unhealthy degradation products by adsorptive capacity of mesoporous silica.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10934-012-9643-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5929041", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5994796", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6111846", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136407", 
        "issn": [
          "1380-2224", 
          "1573-4854"
        ], 
        "name": "Journal of Porous Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "keywords": [
      "TiO2 particles", 
      "mesoporous silica", 
      "composite materials", 
      "transmission electron microscope observations", 
      "silane-coupling reagent", 
      "nanocomposite materials", 
      "CO2 production rate", 
      "electron microscope observations", 
      "production rate", 
      "composite photocatalyst", 
      "photocatalytic efficiency", 
      "surface modification", 
      "higher CO2 production rate", 
      "pristine TiO2", 
      "mesopore channels", 
      "photocatalytic decomposition", 
      "titanium dioxide", 
      "adsorptive capacity", 
      "microscope observations", 
      "particles", 
      "TiO2", 
      "silica", 
      "surfactant-templated mesoporous silica", 
      "organic substances", 
      "TiO2 surface", 
      "materials", 
      "nanocomposites", 
      "efficiency", 
      "photocatalyst", 
      "air", 
      "acetone", 
      "surface", 
      "degradation products", 
      "dioxide", 
      "P25", 
      "emission", 
      "CO2", 
      "channels", 
      "degradation", 
      "dark conditions", 
      "decomposition", 
      "conditions", 
      "ppm", 
      "rate", 
      "capacity", 
      "modification", 
      "products", 
      "concentration", 
      "deactivation", 
      "observations", 
      "MCT", 
      "degree", 
      "hand", 
      "photoirradiation", 
      "substances", 
      "reagents", 
      "disorders", 
      "carbon-coated TiO2 particles", 
      "composite MCT", 
      "unhealthy degradation products", 
      "pre-formed TiO2"
    ], 
    "name": "Photocatalytic decomposition of 2-propanol and acetone in air by nanocomposites of pre-formed TiO2 particles and mesoporous silica", 
    "pagination": "693-699", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041551696"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10934-012-9643-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10934-012-9643-5", 
      "https://app.dimensions.ai/details/publication/pub.1041551696"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_570.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10934-012-9643-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10934-012-9643-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10934-012-9643-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10934-012-9643-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10934-012-9643-5'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      89 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10934-012-9643-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N821a8e10efaf49989d1f99ea480566b1
4 schema:citation sg:pub.10.1007/bf00806579
5 sg:pub.10.1038/238037a0
6 sg:pub.10.1038/41233
7 schema:datePublished 2012-10-18
8 schema:datePublishedReg 2012-10-18
9 schema:description The photocatalytic efficiency in the degradations of gaseous 2-propanol and acetone has been studied on nanocomposite materials prepared by embedding well-crystallized titanium dioxide (TiO2) particles (Degussa P25) into surfactant-templated mesoporous silica. The composite materials adsorbed the organic substances considerably in dark conditions and decomposed them completely to CO2 under photoirradiation. The efficiency was influenced remarkably by the surface modification of TiO2 particles. According to the transmission electron microscope observations, using carbon-coated TiO2 particles gave a composite MCT-C with well-ordered channels of the mesoporous silica, but not all the TiO2 particles were embedded in silica. MCT-C showed a high CO2 production rate comparable to that of pristine TiO2 (P25) when the concentrations of gaseous 2-propanol and acetone were as low as several ppm. On the other hand, using n-octadecyl-grafted TiO2 particles resulted in a composite MCT-S in which most of the TiO2 particles were well embedded in mesoporous silica, but the degree of channel-ordering was comparatively lower than that in MCT-C. The CO2 production rate for MCT-S was lower than that for P25. This is probably due to the deactivation of TiO2 surface by the silane-coupling reagent and/or the disorder of the mesopore channels. These composite photocatalysts could suppress the emission of unhealthy degradation products by adsorptive capacity of mesoporous silica.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N415fb037e12043f3a6ed5d6c4f31825a
14 Nf336950046334edb95faecb0d904a65a
15 sg:journal.1136407
16 schema:keywords CO2
17 CO2 production rate
18 MCT
19 P25
20 TiO2
21 TiO2 particles
22 TiO2 surface
23 acetone
24 adsorptive capacity
25 air
26 capacity
27 carbon-coated TiO2 particles
28 channels
29 composite MCT
30 composite materials
31 composite photocatalyst
32 concentration
33 conditions
34 dark conditions
35 deactivation
36 decomposition
37 degradation
38 degradation products
39 degree
40 dioxide
41 disorders
42 efficiency
43 electron microscope observations
44 emission
45 hand
46 higher CO2 production rate
47 materials
48 mesopore channels
49 mesoporous silica
50 microscope observations
51 modification
52 nanocomposite materials
53 nanocomposites
54 observations
55 organic substances
56 particles
57 photocatalyst
58 photocatalytic decomposition
59 photocatalytic efficiency
60 photoirradiation
61 ppm
62 pre-formed TiO2
63 pristine TiO2
64 production rate
65 products
66 rate
67 reagents
68 silane-coupling reagent
69 silica
70 substances
71 surface
72 surface modification
73 surfactant-templated mesoporous silica
74 titanium dioxide
75 transmission electron microscope observations
76 unhealthy degradation products
77 schema:name Photocatalytic decomposition of 2-propanol and acetone in air by nanocomposites of pre-formed TiO2 particles and mesoporous silica
78 schema:pagination 693-699
79 schema:productId N9b23991e809a4dae92d8b1025799887e
80 Ncfabf30035924c64a6faf8f0febe844e
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041551696
82 https://doi.org/10.1007/s10934-012-9643-5
83 schema:sdDatePublished 2021-12-01T19:27
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N1709d97c75ab467ea3e4a50baf5fe3e3
86 schema:url https://doi.org/10.1007/s10934-012-9643-5
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N0b7079e12a9340e097ad9a3d4021b8cd rdf:first sg:person.011757233321.61
91 rdf:rest N692edab293ab45a4bef15b04fc6ca07a
92 N1709d97c75ab467ea3e4a50baf5fe3e3 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N38526a8e481f4598a3856a024a3ecbd3 rdf:first N94193f6ae30b400facfa31c0daf1ee77
95 rdf:rest Ncf1bc9396e5c4a0790e3c785643b75d6
96 N415fb037e12043f3a6ed5d6c4f31825a schema:volumeNumber 20
97 rdf:type schema:PublicationVolume
98 N692edab293ab45a4bef15b04fc6ca07a rdf:first sg:person.013441371131.68
99 rdf:rest rdf:nil
100 N821a8e10efaf49989d1f99ea480566b1 rdf:first sg:person.010107113731.36
101 rdf:rest N38526a8e481f4598a3856a024a3ecbd3
102 N94193f6ae30b400facfa31c0daf1ee77 schema:affiliation grid-institutes:grid.257022.0
103 schema:familyName Kubota
104 schema:givenName Yuji
105 rdf:type schema:Person
106 N9b23991e809a4dae92d8b1025799887e schema:name dimensions_id
107 schema:value pub.1041551696
108 rdf:type schema:PropertyValue
109 Ncf1bc9396e5c4a0790e3c785643b75d6 rdf:first sg:person.010621463307.59
110 rdf:rest N0b7079e12a9340e097ad9a3d4021b8cd
111 Ncfabf30035924c64a6faf8f0febe844e schema:name doi
112 schema:value 10.1007/s10934-012-9643-5
113 rdf:type schema:PropertyValue
114 Nf336950046334edb95faecb0d904a65a schema:issueNumber 4
115 rdf:type schema:PublicationIssue
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
120 schema:name Materials Engineering
121 rdf:type schema:DefinedTerm
122 sg:grant.5929041 http://pending.schema.org/fundedItem sg:pub.10.1007/s10934-012-9643-5
123 rdf:type schema:MonetaryGrant
124 sg:grant.5994796 http://pending.schema.org/fundedItem sg:pub.10.1007/s10934-012-9643-5
125 rdf:type schema:MonetaryGrant
126 sg:grant.6111846 http://pending.schema.org/fundedItem sg:pub.10.1007/s10934-012-9643-5
127 rdf:type schema:MonetaryGrant
128 sg:journal.1136407 schema:issn 1380-2224
129 1573-4854
130 schema:name Journal of Porous Materials
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.010107113731.36 schema:affiliation grid-institutes:grid.257022.0
134 schema:familyName Sakai
135 schema:givenName Hiroyuki
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010107113731.36
137 rdf:type schema:Person
138 sg:person.010621463307.59 schema:affiliation grid-institutes:grid.257022.0
139 schema:familyName Yamaguchi
140 schema:givenName Kosuke
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010621463307.59
142 rdf:type schema:Person
143 sg:person.011757233321.61 schema:affiliation grid-institutes:grid.257022.0
144 schema:familyName Fukuoka
145 schema:givenName Hiroshi
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757233321.61
147 rdf:type schema:Person
148 sg:person.013441371131.68 schema:affiliation grid-institutes:grid.257022.0
149 schema:familyName Inumaru
150 schema:givenName Kei
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013441371131.68
152 rdf:type schema:Person
153 sg:pub.10.1007/bf00806579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035086534
154 https://doi.org/10.1007/bf00806579
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
157 https://doi.org/10.1038/238037a0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/41233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025007901
160 https://doi.org/10.1038/41233
161 rdf:type schema:CreativeWork
162 grid-institutes:grid.257022.0 schema:alternateName Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan
163 schema:name Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, 739-8527, Higashi-Hiroshima, Japan
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...