Hyperspectral core logging for fire reconstruction studies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Antonin Van Exem, Maxime Debret, Yoann Copard, Boris Vannière, Pierre Sabatier, Stephane Marcotte, Benoit Laignel, Jean-Louis Reyss, Marc Desmet

ABSTRACT

Lacustrine sediments contain a wide range of proxies that enable paleoenvironmental reconstructions. For instance, charcoal can be used to document past fire regime changes. In order to analyse high-temporal- and spatial-resolution records, however, it is necessary to develop fast, low-cost and high-stratigraphic-resolution methods. We developed a new paleo-fire proxy by studying a lacustrine core from the Esterel Massif, SE France, an area affected by two recent fire events, in AD 1987 and 2003. For this purpose, we searched for charcoal deposited and preserved in the lake sediments by combining a number of complementary methods, including: classic macrocharcoal tallying, scanning spectrophotometry, scanning hyperspectral imaging and high pressure liquid chromatography analyses. Macrocharcoal quantification is efficient, but time-consuming, and only provides intermediate-resolution data (cm scale). Spectrophotometry, used classically to quantify colour, is very fast, provides high-resolution data (4 mm) and is non-destructive (core preservation). Hyperspectral data have the same advantages as spectrophotometry, but offer higher spatial resolution (64-µm pixel size) and higher spectral resolution (6 nm) for core logging applications. The main result of this research is based on hyperspectral analysis at very high stratigraphic resolution using the I-band index. This index usually measures reflectance values at [660, 670 nm] corresponding to the trough in red reflectance produced by Chlorophyll a and its diagenetic products. This [660, 670 nm] reflectance trough, however, is also affected by the presence of altered organic matter and decreases with altered organic matter such as charcoal particles. Charcoal effect on the reflectance of Chlorophyll a and its diagenetic products is identified on first derivative spectra by a characteristic pattern around 675 nm, which is also in agreement with the Chlorophyll a concentrations measured by high-pressure liquid chromatography and charcoal particles. The I-band index is hence suitable for detecting burned organic matter, by quantifying the dilution of the chlorophyll signal by the charcoal signal. Thus, this adaptation of the I-band index can be applied in fire reconstruction studies. More... »

PAGES

297-308

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10933-017-0009-5

DOI

http://dx.doi.org/10.1007/s10933-017-0009-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099694547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Normandie Universit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.460771.3", 
          "name": [
            "UNIROUEN, UNICAEN, CNRS, M2C, Normandie Univ., 76000, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Exem", 
        "givenName": "Antonin", 
        "id": "sg:person.07421310554.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421310554.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rouen", 
          "id": "https://www.grid.ac/institutes/grid.10400.35", 
          "name": [
            "UNIROUEN, UNICAEN, CNRS, M2C, Normandie Univ., 76000, Rouen, France", 
            "UMR CNRS 6143 - Morphodynamique Continentale et C\u00f4ti\u00e8re, B\u00e2timent Blondel - UFR Sciences et Techniques, Universit\u00e9 de Rouen, 76821, Mont-Saint-Aignan Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Debret", 
        "givenName": "Maxime", 
        "id": "sg:person.012043477301.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043477301.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Normandie Universit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.460771.3", 
          "name": [
            "UNIROUEN, UNICAEN, CNRS, M2C, Normandie Univ., 76000, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Copard", 
        "givenName": "Yoann", 
        "id": "sg:person.0701226443.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701226443.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Bourgogne Franche-Comt\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.493090.7", 
          "name": [
            "Chrono-Environnement UMR 6249, MSHE USR 3124, CNRS, Univ. Bourgogne Franche-Comt\u00e9, 25000, Besan\u00e7on, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanni\u00e8re", 
        "givenName": "Boris", 
        "id": "sg:person.010274735157.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274735157.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Environnement, Dynamique et Territoires de Montagne (EDYTEM), CNRS, University Savoie Mont Blanc, 73373, Le Bourget du Lac, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sabatier", 
        "givenName": "Pierre", 
        "id": "sg:person.01232277172.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232277172.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
          "id": "https://www.grid.ac/institutes/grid.435013.0", 
          "name": [
            "INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandy University, avenue de l\u2019Universit\u00e9, 76800, Saint-\u00c9tienne-du-Rouvray, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marcotte", 
        "givenName": "Stephane", 
        "id": "sg:person.01267506165.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267506165.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Normandie Universit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.460771.3", 
          "name": [
            "UNIROUEN, UNICAEN, CNRS, M2C, Normandie Univ., 76000, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laignel", 
        "givenName": "Benoit", 
        "id": "sg:person.012353757610.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353757610.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Environnement, Dynamique et Territoires de Montagne (EDYTEM), CNRS, University Savoie Mont Blanc, 73373, Le Bourget du Lac, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reyss", 
        "givenName": "Jean-Louis", 
        "id": "sg:person.0662562160.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662562160.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fran\u00e7ois Rabelais University", 
          "id": "https://www.grid.ac/institutes/grid.12366.30", 
          "name": [
            "GeHCO, University of Tours, Tours, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desmet", 
        "givenName": "Marc", 
        "id": "sg:person.013216050377.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216050377.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0025-3227(89)90082-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000900165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-3227(89)90082-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000900165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(71)90202-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003327299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(71)90202-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003327299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0033-5894(88)90089-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008846667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.quascirev.2008.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011142428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margeo.2006.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011998215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-4403(03)00017-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012046121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0305-4403(03)00017-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012046121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icarus.2007.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012562384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0025-3227(99)00037-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017379266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:clim.0000018508.94901.9c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021038060", 
          "https://doi.org/10.1023/b:clim.0000018508.94901.9c"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-3227(96)00037-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024646340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00050929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024910703", 
          "https://doi.org/10.1007/bf00050929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00050929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024910703", 
          "https://doi.org/10.1007/bf00050929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1529-8817.1998.340383.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025872931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10933-006-0006-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027419310", 
          "https://doi.org/10.1007/s10933-006-0006-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008186501993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029026713", 
          "https://doi.org/10.1023/a:1008186501993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x04-071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029407206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01754-4_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033767704", 
          "https://doi.org/10.1007/978-3-642-01754-4_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2016.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034062843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dsr.2003.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034557356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb088ib12p10635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034977630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.quascirev.2007.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036506836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9002(95)00021-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037920242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-2361(84)90433-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038120475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-2361(84)90433-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038120475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earscirev.2011.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042216319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10933-013-9739-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042539149", 
          "https://doi.org/10.1007/s10933-013-9739-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00531-002-0264-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043020395", 
          "https://doi.org/10.1007/s00531-002-0264-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.palaeo.2014.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048059816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-0182(04)00364-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054599302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0959683610384164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063898384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0959683610384164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063898384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/095968369600600102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063899356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/095968369600600102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063899356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/d4267794-2b26-11d7-8648000102c1865d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064969391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2516/ogst:1998036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070870110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jcp/1988850963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085896862"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "Lacustrine sediments contain a wide range of proxies that enable paleoenvironmental reconstructions. For instance, charcoal can be used to document past fire regime changes. In order to analyse high-temporal- and spatial-resolution records, however, it is necessary to develop fast, low-cost and high-stratigraphic-resolution methods. We developed a new paleo-fire proxy by studying a lacustrine core from the Esterel Massif, SE France, an area affected by two recent fire events, in AD 1987 and 2003. For this purpose, we searched for charcoal deposited and preserved in the lake sediments by combining a number of complementary methods, including: classic macrocharcoal tallying, scanning spectrophotometry, scanning hyperspectral imaging and high pressure liquid chromatography analyses. Macrocharcoal quantification is efficient, but time-consuming, and only provides intermediate-resolution data (cm scale). Spectrophotometry, used classically to quantify colour, is very fast, provides high-resolution data (4 mm) and is non-destructive (core preservation). Hyperspectral data have the same advantages as spectrophotometry, but offer higher spatial resolution (64-\u00b5m pixel size) and higher spectral resolution (6 nm) for core logging applications. The main result of this research is based on hyperspectral analysis at very high stratigraphic resolution using the I-band index. This index usually measures reflectance values at [660, 670 nm] corresponding to the trough in red reflectance produced by Chlorophyll a and its diagenetic products. This [660, 670 nm] reflectance trough, however, is also affected by the presence of altered organic matter and decreases with altered organic matter such as charcoal particles. Charcoal effect on the reflectance of Chlorophyll a and its diagenetic products is identified on first derivative spectra by a characteristic pattern around 675 nm, which is also in agreement with the Chlorophyll a concentrations measured by high-pressure liquid chromatography and charcoal particles. The I-band index is hence suitable for detecting burned organic matter, by quantifying the dilution of the chlorophyll signal by the charcoal signal. Thus, this adaptation of the I-band index can be applied in fire reconstruction studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10933-017-0009-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026225", 
        "issn": [
          "0921-2728", 
          "1573-0417"
        ], 
        "name": "Journal of Paleolimnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Hyperspectral core logging for fire reconstruction studies", 
    "pagination": "297-308", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3f50e0777f578708af3c6992047fceb8569e886b87431bdf5a93631cdbc63b16"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10933-017-0009-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099694547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10933-017-0009-5", 
      "https://app.dimensions.ai/details/publication/pub.1099694547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10933-017-0009-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10933-017-0009-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10933-017-0009-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10933-017-0009-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10933-017-0009-5'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10933-017-0009-5 schema:about anzsrc-for:04
2 anzsrc-for:0402
3 schema:author N1e1110eeb1b24f40b820eded7752ba7d
4 schema:citation sg:pub.10.1007/978-3-642-01754-4_13
5 sg:pub.10.1007/bf00050929
6 sg:pub.10.1007/s00531-002-0264-0
7 sg:pub.10.1007/s10933-006-0006-6
8 sg:pub.10.1007/s10933-013-9739-1
9 sg:pub.10.1023/a:1008186501993
10 sg:pub.10.1023/b:clim.0000018508.94901.9c
11 https://doi.org/10.1016/0012-821x(71)90202-0
12 https://doi.org/10.1016/0016-2361(84)90433-2
13 https://doi.org/10.1016/0025-3227(89)90082-0
14 https://doi.org/10.1016/0025-3227(96)00037-0
15 https://doi.org/10.1016/0033-5894(88)90089-0
16 https://doi.org/10.1016/0168-9002(95)00021-6
17 https://doi.org/10.1016/j.dsr.2003.06.001
18 https://doi.org/10.1016/j.earscirev.2011.07.002
19 https://doi.org/10.1016/j.gloplacha.2016.07.012
20 https://doi.org/10.1016/j.icarus.2007.02.017
21 https://doi.org/10.1016/j.margeo.2006.01.005
22 https://doi.org/10.1016/j.palaeo.2014.06.021
23 https://doi.org/10.1016/j.quascirev.2007.03.010
24 https://doi.org/10.1016/j.quascirev.2008.02.011
25 https://doi.org/10.1016/s0025-3227(99)00037-7
26 https://doi.org/10.1016/s0031-0182(04)00364-5
27 https://doi.org/10.1016/s0305-4403(03)00017-7
28 https://doi.org/10.1029/jb088ib12p10635
29 https://doi.org/10.1046/j.1529-8817.1998.340383.x
30 https://doi.org/10.1051/jcp/1988850963
31 https://doi.org/10.1139/x04-071
32 https://doi.org/10.1177/0959683610384164
33 https://doi.org/10.1177/095968369600600102
34 https://doi.org/10.1306/d4267794-2b26-11d7-8648000102c1865d
35 https://doi.org/10.2516/ogst:1998036
36 schema:datePublished 2018-03
37 schema:datePublishedReg 2018-03-01
38 schema:description Lacustrine sediments contain a wide range of proxies that enable paleoenvironmental reconstructions. For instance, charcoal can be used to document past fire regime changes. In order to analyse high-temporal- and spatial-resolution records, however, it is necessary to develop fast, low-cost and high-stratigraphic-resolution methods. We developed a new paleo-fire proxy by studying a lacustrine core from the Esterel Massif, SE France, an area affected by two recent fire events, in AD 1987 and 2003. For this purpose, we searched for charcoal deposited and preserved in the lake sediments by combining a number of complementary methods, including: classic macrocharcoal tallying, scanning spectrophotometry, scanning hyperspectral imaging and high pressure liquid chromatography analyses. Macrocharcoal quantification is efficient, but time-consuming, and only provides intermediate-resolution data (cm scale). Spectrophotometry, used classically to quantify colour, is very fast, provides high-resolution data (4 mm) and is non-destructive (core preservation). Hyperspectral data have the same advantages as spectrophotometry, but offer higher spatial resolution (64-µm pixel size) and higher spectral resolution (6 nm) for core logging applications. The main result of this research is based on hyperspectral analysis at very high stratigraphic resolution using the I-band index. This index usually measures reflectance values at [660, 670 nm] corresponding to the trough in red reflectance produced by Chlorophyll a and its diagenetic products. This [660, 670 nm] reflectance trough, however, is also affected by the presence of altered organic matter and decreases with altered organic matter such as charcoal particles. Charcoal effect on the reflectance of Chlorophyll a and its diagenetic products is identified on first derivative spectra by a characteristic pattern around 675 nm, which is also in agreement with the Chlorophyll a concentrations measured by high-pressure liquid chromatography and charcoal particles. The I-band index is hence suitable for detecting burned organic matter, by quantifying the dilution of the chlorophyll signal by the charcoal signal. Thus, this adaptation of the I-band index can be applied in fire reconstruction studies.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf Na8ecc1e5e70246a0893d20812ccdcf29
43 Nf131382fa05e412fa7aecdea50313d73
44 sg:journal.1026225
45 schema:name Hyperspectral core logging for fire reconstruction studies
46 schema:pagination 297-308
47 schema:productId N0445cd6125b3454dbab20cbd9c859899
48 N0c77f98a79fe476abda2505c2335bdfc
49 N17d5cc8f3397422f924d985085be4cb5
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099694547
51 https://doi.org/10.1007/s10933-017-0009-5
52 schema:sdDatePublished 2019-04-10T21:00
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nca89f4936b9a4308add55433f0b44274
55 schema:url http://link.springer.com/10.1007/s10933-017-0009-5
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0445cd6125b3454dbab20cbd9c859899 schema:name readcube_id
60 schema:value 3f50e0777f578708af3c6992047fceb8569e886b87431bdf5a93631cdbc63b16
61 rdf:type schema:PropertyValue
62 N0a94e213965c4f0c89d3f4157a0ed69b rdf:first sg:person.013216050377.89
63 rdf:rest rdf:nil
64 N0c77f98a79fe476abda2505c2335bdfc schema:name dimensions_id
65 schema:value pub.1099694547
66 rdf:type schema:PropertyValue
67 N17d5cc8f3397422f924d985085be4cb5 schema:name doi
68 schema:value 10.1007/s10933-017-0009-5
69 rdf:type schema:PropertyValue
70 N1aa805289e7042f9a1891de89866fca7 rdf:first sg:person.010274735157.44
71 rdf:rest Nf8843c8c46084653a11e94c84a8f0cab
72 N1e1110eeb1b24f40b820eded7752ba7d rdf:first sg:person.07421310554.85
73 rdf:rest Nf8f47a3e988045b1aee399d0721414f7
74 N5266a4c41a2e4da4a6b866303478547c rdf:first sg:person.01267506165.89
75 rdf:rest Nd182caaec730450f94810715b65a901f
76 N86b54f01c40645deb41395f6f1576819 rdf:first sg:person.0662562160.37
77 rdf:rest N0a94e213965c4f0c89d3f4157a0ed69b
78 Na8ecc1e5e70246a0893d20812ccdcf29 schema:issueNumber 3
79 rdf:type schema:PublicationIssue
80 Nae75d4c647f9468588cabe45c630d4d9 rdf:first sg:person.0701226443.78
81 rdf:rest N1aa805289e7042f9a1891de89866fca7
82 Nca89f4936b9a4308add55433f0b44274 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nd182caaec730450f94810715b65a901f rdf:first sg:person.012353757610.32
85 rdf:rest N86b54f01c40645deb41395f6f1576819
86 Nf131382fa05e412fa7aecdea50313d73 schema:volumeNumber 59
87 rdf:type schema:PublicationVolume
88 Nf8843c8c46084653a11e94c84a8f0cab rdf:first sg:person.01232277172.81
89 rdf:rest N5266a4c41a2e4da4a6b866303478547c
90 Nf8f47a3e988045b1aee399d0721414f7 rdf:first sg:person.012043477301.29
91 rdf:rest Nae75d4c647f9468588cabe45c630d4d9
92 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
93 schema:name Earth Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
96 schema:name Geochemistry
97 rdf:type schema:DefinedTerm
98 sg:journal.1026225 schema:issn 0921-2728
99 1573-0417
100 schema:name Journal of Paleolimnology
101 rdf:type schema:Periodical
102 sg:person.010274735157.44 schema:affiliation https://www.grid.ac/institutes/grid.493090.7
103 schema:familyName Vannière
104 schema:givenName Boris
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274735157.44
106 rdf:type schema:Person
107 sg:person.012043477301.29 schema:affiliation https://www.grid.ac/institutes/grid.10400.35
108 schema:familyName Debret
109 schema:givenName Maxime
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043477301.29
111 rdf:type schema:Person
112 sg:person.01232277172.81 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
113 schema:familyName Sabatier
114 schema:givenName Pierre
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232277172.81
116 rdf:type schema:Person
117 sg:person.012353757610.32 schema:affiliation https://www.grid.ac/institutes/grid.460771.3
118 schema:familyName Laignel
119 schema:givenName Benoit
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353757610.32
121 rdf:type schema:Person
122 sg:person.01267506165.89 schema:affiliation https://www.grid.ac/institutes/grid.435013.0
123 schema:familyName Marcotte
124 schema:givenName Stephane
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267506165.89
126 rdf:type schema:Person
127 sg:person.013216050377.89 schema:affiliation https://www.grid.ac/institutes/grid.12366.30
128 schema:familyName Desmet
129 schema:givenName Marc
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216050377.89
131 rdf:type schema:Person
132 sg:person.0662562160.37 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
133 schema:familyName Reyss
134 schema:givenName Jean-Louis
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662562160.37
136 rdf:type schema:Person
137 sg:person.0701226443.78 schema:affiliation https://www.grid.ac/institutes/grid.460771.3
138 schema:familyName Copard
139 schema:givenName Yoann
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701226443.78
141 rdf:type schema:Person
142 sg:person.07421310554.85 schema:affiliation https://www.grid.ac/institutes/grid.460771.3
143 schema:familyName Van Exem
144 schema:givenName Antonin
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421310554.85
146 rdf:type schema:Person
147 sg:pub.10.1007/978-3-642-01754-4_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033767704
148 https://doi.org/10.1007/978-3-642-01754-4_13
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf00050929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024910703
151 https://doi.org/10.1007/bf00050929
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00531-002-0264-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043020395
154 https://doi.org/10.1007/s00531-002-0264-0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s10933-006-0006-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027419310
157 https://doi.org/10.1007/s10933-006-0006-6
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10933-013-9739-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042539149
160 https://doi.org/10.1007/s10933-013-9739-1
161 rdf:type schema:CreativeWork
162 sg:pub.10.1023/a:1008186501993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029026713
163 https://doi.org/10.1023/a:1008186501993
164 rdf:type schema:CreativeWork
165 sg:pub.10.1023/b:clim.0000018508.94901.9c schema:sameAs https://app.dimensions.ai/details/publication/pub.1021038060
166 https://doi.org/10.1023/b:clim.0000018508.94901.9c
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/0012-821x(71)90202-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003327299
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0016-2361(84)90433-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038120475
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0025-3227(89)90082-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000900165
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0025-3227(96)00037-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024646340
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0033-5894(88)90089-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008846667
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0168-9002(95)00021-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037920242
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.dsr.2003.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034557356
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.earscirev.2011.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042216319
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.gloplacha.2016.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034062843
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.icarus.2007.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012562384
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.margeo.2006.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011998215
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.palaeo.2014.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048059816
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.quascirev.2007.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036506836
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.quascirev.2008.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011142428
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0025-3227(99)00037-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017379266
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0031-0182(04)00364-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054599302
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0305-4403(03)00017-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012046121
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1029/jb088ib12p10635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034977630
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1046/j.1529-8817.1998.340383.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025872931
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1051/jcp/1988850963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085896862
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1139/x04-071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029407206
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1177/0959683610384164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063898384
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1177/095968369600600102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063899356
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1306/d4267794-2b26-11d7-8648000102c1865d schema:sameAs https://app.dimensions.ai/details/publication/pub.1064969391
215 rdf:type schema:CreativeWork
216 https://doi.org/10.2516/ogst:1998036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070870110
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.10400.35 schema:alternateName University of Rouen
219 schema:name UMR CNRS 6143 - Morphodynamique Continentale et Côtière, Bâtiment Blondel - UFR Sciences et Techniques, Université de Rouen, 76821, Mont-Saint-Aignan Cedex, France
220 UNIROUEN, UNICAEN, CNRS, M2C, Normandie Univ., 76000, Rouen, France
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.12366.30 schema:alternateName François Rabelais University
223 schema:name GeHCO, University of Tours, Tours, France
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.435013.0 schema:alternateName Institut National des Sciences Appliquées de Rouen
226 schema:name INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandy University, avenue de l’Université, 76800, Saint-Étienne-du-Rouvray, France
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
229 schema:name Environnement, Dynamique et Territoires de Montagne (EDYTEM), CNRS, University Savoie Mont Blanc, 73373, Le Bourget du Lac, France
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.460771.3 schema:alternateName Normandie Université
232 schema:name UNIROUEN, UNICAEN, CNRS, M2C, Normandie Univ., 76000, Rouen, France
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.493090.7 schema:alternateName Université Bourgogne Franche-Comté
235 schema:name Chrono-Environnement UMR 6249, MSHE USR 3124, CNRS, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...