Population pharmacokinetic model selection assisted by machine learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-10-27

AUTHORS

Emeric Sibieude, Akash Khandelwal, Pascal Girard, Jan S. Hesthaven, Nadia Terranova

ABSTRACT

A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches. More... »

PAGES

257-270

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10928-021-09793-6

DOI

http://dx.doi.org/10.1007/s10928-021-09793-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142218268

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34708337


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Basic Sciences, EPFL, Lausanne, Switzerland", 
            "Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sibieude", 
        "givenName": "Emeric", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Merck KGaA, Darmstadt, Germany", 
          "id": "http://www.grid.ac/institutes/grid.39009.33", 
          "name": [
            "Merck KGaA, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khandelwal", 
        "givenName": "Akash", 
        "id": "sg:person.010613427050.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613427050.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girard", 
        "givenName": "Pascal", 
        "id": "sg:person.012661201622.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chair of Computational Mathematics and Simulation Science (MCSS), Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Chair of Computational Mathematics and Simulation Science (MCSS), Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hesthaven", 
        "givenName": "Jan S.", 
        "id": "sg:person.0627474224.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627474224.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terranova", 
        "givenName": "Nadia", 
        "id": "sg:person.01175701615.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175701615.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10928-012-9258-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014492525", 
          "https://doi.org/10.1007/s10928-012-9258-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41591-018-0335-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112058854", 
          "https://doi.org/10.1038/s41591-018-0335-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011907920641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023547498", 
          "https://doi.org/10.1023/a:1011907920641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-014-0057-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051549373", 
          "https://doi.org/10.1186/s13073-014-0057-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-021-00593-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138157398", 
          "https://doi.org/10.1208/s12248-021-00593-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11701-007-0021-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003109923", 
          "https://doi.org/10.1007/s11701-007-0021-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-007-9435-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034726965", 
          "https://doi.org/10.1007/s11095-007-9435-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10928-006-9004-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029840935", 
          "https://doi.org/10.1007/s10928-006-9004-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10928-021-09757-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138222486", 
          "https://doi.org/10.1007/s10928-021-09757-w"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-27", 
    "datePublishedReg": "2021-10-27", 
    "description": "A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10928-021-09793-6", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016394", 
        "issn": [
          "1567-567X", 
          "2168-5789"
        ], 
        "name": "Journal of Pharmacokinetics and Pharmacodynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "neural network", 
      "machine learning", 
      "neural network classification tasks", 
      "model selection", 
      "network classification tasks", 
      "genetic algorithm", 
      "neural network classification", 
      "machine learning methods", 
      "machine learning approaches", 
      "cross-entropy loss", 
      "binary cross-entropy loss", 
      "genetic algorithm performance", 
      "intensive tasks", 
      "regression tasks", 
      "classification task", 
      "supervised machine", 
      "network classification", 
      "learning methods", 
      "learning approach", 
      "computational gains", 
      "large datasets", 
      "statistical model", 
      "algorithm performance", 
      "statistical rules", 
      "fitness function", 
      "mean square error", 
      "algorithm", 
      "genetic algorithm method", 
      "minimization process", 
      "machine", 
      "major requirement", 
      "fast selection", 
      "complex models", 
      "network", 
      "task", 
      "different scenarios", 
      "accurate results", 
      "algorithm method", 
      "learning", 
      "square error", 
      "plausible model", 
      "model development", 
      "accurate selection", 
      "dataset", 
      "model", 
      "selection", 
      "classification", 
      "scenarios", 
      "requirements", 
      "pharmacometric approaches", 
      "approach", 
      "method", 
      "rules", 
      "error", 
      "performance", 
      "efficiency", 
      "cases", 
      "function", 
      "results", 
      "data", 
      "process", 
      "gain", 
      "purpose", 
      "development", 
      "manuscript", 
      "loss", 
      "pharmacokinetic data", 
      "complexes"
    ], 
    "name": "Population pharmacokinetic model selection assisted by machine learning", 
    "pagination": "257-270", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142218268"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10928-021-09793-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34708337"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10928-021-09793-6", 
      "https://app.dimensions.ai/details/publication/pub.1142218268"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_909.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10928-021-09793-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10928-021-09793-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10928-021-09793-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10928-021-09793-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10928-021-09793-6'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      106 URIs      89 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10928-021-09793-6 schema:about N012b27bd8e354598a6f51f4cfd6d3ce0
2 N921c1d7b1ca04746a50a90df39a6f366
3 N9bda05b95ca44a63b7094d155cab8f3f
4 Ncb6db71978ee451ba06e3eb2d42145aa
5 anzsrc-for:11
6 anzsrc-for:1115
7 schema:author Na2b2d8e7e0054a8399ab37de8dc62058
8 schema:citation sg:pub.10.1007/s10928-006-9004-6
9 sg:pub.10.1007/s10928-012-9258-0
10 sg:pub.10.1007/s10928-021-09757-w
11 sg:pub.10.1007/s11095-007-9435-9
12 sg:pub.10.1007/s11701-007-0021-2
13 sg:pub.10.1023/a:1011907920641
14 sg:pub.10.1038/s41591-018-0335-9
15 sg:pub.10.1186/s13073-014-0057-7
16 sg:pub.10.1208/s12248-021-00593-x
17 schema:datePublished 2021-10-27
18 schema:datePublishedReg 2021-10-27
19 schema:description A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N836b8a712ede43868d67f653d9c0e281
23 Ne8d79b1c26884ceb829b6af2c1ec3e31
24 sg:journal.1016394
25 schema:keywords accurate results
26 accurate selection
27 algorithm
28 algorithm method
29 algorithm performance
30 approach
31 binary cross-entropy loss
32 cases
33 classification
34 classification task
35 complex models
36 complexes
37 computational gains
38 cross-entropy loss
39 data
40 dataset
41 development
42 different scenarios
43 efficiency
44 error
45 fast selection
46 fitness function
47 function
48 gain
49 genetic algorithm
50 genetic algorithm method
51 genetic algorithm performance
52 intensive tasks
53 large datasets
54 learning
55 learning approach
56 learning methods
57 loss
58 machine
59 machine learning
60 machine learning approaches
61 machine learning methods
62 major requirement
63 manuscript
64 mean square error
65 method
66 minimization process
67 model
68 model development
69 model selection
70 network
71 network classification
72 network classification tasks
73 neural network
74 neural network classification
75 neural network classification tasks
76 performance
77 pharmacokinetic data
78 pharmacometric approaches
79 plausible model
80 process
81 purpose
82 regression tasks
83 requirements
84 results
85 rules
86 scenarios
87 selection
88 square error
89 statistical model
90 statistical rules
91 supervised machine
92 task
93 schema:name Population pharmacokinetic model selection assisted by machine learning
94 schema:pagination 257-270
95 schema:productId N00c6d1eb1ecb4bab9bb74ce745597868
96 N1e42eb14f858437db6c7db04d26cde7c
97 Naf024c2d3c5143bfaf2eaa60c8e96442
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142218268
99 https://doi.org/10.1007/s10928-021-09793-6
100 schema:sdDatePublished 2022-10-01T06:49
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N1f4939bcc7634a8f85ade6d7209f7c7d
103 schema:url https://doi.org/10.1007/s10928-021-09793-6
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N00c6d1eb1ecb4bab9bb74ce745597868 schema:name doi
108 schema:value 10.1007/s10928-021-09793-6
109 rdf:type schema:PropertyValue
110 N012b27bd8e354598a6f51f4cfd6d3ce0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Models, Statistical
112 rdf:type schema:DefinedTerm
113 N1e42eb14f858437db6c7db04d26cde7c schema:name dimensions_id
114 schema:value pub.1142218268
115 rdf:type schema:PropertyValue
116 N1f4939bcc7634a8f85ade6d7209f7c7d schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N42131aae00ca44fa9bad5147934c230d rdf:first sg:person.01175701615.59
119 rdf:rest rdf:nil
120 N50a815eff045409d861de6adf34730a5 schema:affiliation grid-institutes:None
121 schema:familyName Sibieude
122 schema:givenName Emeric
123 rdf:type schema:Person
124 N7596f780834f4d08ac358a0489b42e95 rdf:first sg:person.012661201622.56
125 rdf:rest Ncbb96c8b055c45b8b99a9e42157c6d76
126 N836b8a712ede43868d67f653d9c0e281 schema:issueNumber 2
127 rdf:type schema:PublicationIssue
128 N921c1d7b1ca04746a50a90df39a6f366 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Machine Learning
130 rdf:type schema:DefinedTerm
131 N9bda05b95ca44a63b7094d155cab8f3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Neural Networks, Computer
133 rdf:type schema:DefinedTerm
134 Na2b2d8e7e0054a8399ab37de8dc62058 rdf:first N50a815eff045409d861de6adf34730a5
135 rdf:rest Ndc05c26de5964a47a8b2b2fbee3021f8
136 Naf024c2d3c5143bfaf2eaa60c8e96442 schema:name pubmed_id
137 schema:value 34708337
138 rdf:type schema:PropertyValue
139 Ncb6db71978ee451ba06e3eb2d42145aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Algorithms
141 rdf:type schema:DefinedTerm
142 Ncbb96c8b055c45b8b99a9e42157c6d76 rdf:first sg:person.0627474224.07
143 rdf:rest N42131aae00ca44fa9bad5147934c230d
144 Ndc05c26de5964a47a8b2b2fbee3021f8 rdf:first sg:person.010613427050.54
145 rdf:rest N7596f780834f4d08ac358a0489b42e95
146 Ne8d79b1c26884ceb829b6af2c1ec3e31 schema:volumeNumber 49
147 rdf:type schema:PublicationVolume
148 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
149 schema:name Medical and Health Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
152 schema:name Pharmacology and Pharmaceutical Sciences
153 rdf:type schema:DefinedTerm
154 sg:journal.1016394 schema:issn 1567-567X
155 2168-5789
156 schema:name Journal of Pharmacokinetics and Pharmacodynamics
157 schema:publisher Springer Nature
158 rdf:type schema:Periodical
159 sg:person.010613427050.54 schema:affiliation grid-institutes:grid.39009.33
160 schema:familyName Khandelwal
161 schema:givenName Akash
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613427050.54
163 rdf:type schema:Person
164 sg:person.01175701615.59 schema:affiliation grid-institutes:None
165 schema:familyName Terranova
166 schema:givenName Nadia
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175701615.59
168 rdf:type schema:Person
169 sg:person.012661201622.56 schema:affiliation grid-institutes:None
170 schema:familyName Girard
171 schema:givenName Pascal
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56
173 rdf:type schema:Person
174 sg:person.0627474224.07 schema:affiliation grid-institutes:grid.5333.6
175 schema:familyName Hesthaven
176 schema:givenName Jan S.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627474224.07
178 rdf:type schema:Person
179 sg:pub.10.1007/s10928-006-9004-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029840935
180 https://doi.org/10.1007/s10928-006-9004-6
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s10928-012-9258-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014492525
183 https://doi.org/10.1007/s10928-012-9258-0
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s10928-021-09757-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1138222486
186 https://doi.org/10.1007/s10928-021-09757-w
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s11095-007-9435-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034726965
189 https://doi.org/10.1007/s11095-007-9435-9
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s11701-007-0021-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003109923
192 https://doi.org/10.1007/s11701-007-0021-2
193 rdf:type schema:CreativeWork
194 sg:pub.10.1023/a:1011907920641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023547498
195 https://doi.org/10.1023/a:1011907920641
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/s41591-018-0335-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112058854
198 https://doi.org/10.1038/s41591-018-0335-9
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/s13073-014-0057-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051549373
201 https://doi.org/10.1186/s13073-014-0057-7
202 rdf:type schema:CreativeWork
203 sg:pub.10.1208/s12248-021-00593-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1138157398
204 https://doi.org/10.1208/s12248-021-00593-x
205 rdf:type schema:CreativeWork
206 grid-institutes:None schema:alternateName Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
207 schema:name Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
208 School of Basic Sciences, EPFL, Lausanne, Switzerland
209 rdf:type schema:Organization
210 grid-institutes:grid.39009.33 schema:alternateName Merck KGaA, Darmstadt, Germany
211 schema:name Merck KGaA, Darmstadt, Germany
212 rdf:type schema:Organization
213 grid-institutes:grid.5333.6 schema:alternateName Chair of Computational Mathematics and Simulation Science (MCSS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
214 schema:name Chair of Computational Mathematics and Simulation Science (MCSS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...