Exposure–disease response analysis of natalizumab in subjects with multiple sclerosis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

Kumar Kandadi Muralidharan, Deb Steiner, Diogo Amarante, Pei-Ran Ho, Dan Mikol, Jacob Elkins, Meena Subramanyam, Ivan Nestorov

ABSTRACT

Natalizumab, a human immunoglobulin monoclonal antibody that targets α4β14β7 integrin, is an effective therapy approved for the treatment of multiple sclerosis (MS). The objective of this analysis was to develop a population exposure-response model utilizing gadolinium-enhancing (Gd) lesion count data from four clinical studies and annualized relapse rate (ARR) data from three clinical studies. The natalizumab exposures were derived for the individuals using a population pharmacokinetic model. A log-linear exposure effect on Gd lesion count and ARR adequately characterized the relationship between exposure and disease response. In the case of the Gd lesion count model, a bimodal model that distributed subjects into two subpopulations based on low or high baseline Gd lesion count provided a superior goodness of fit. The mean (95% confidence interval) slopes from the exposure-Gd lesion count model and exposure-ARR model are -0.0903 (-0.100, -0.081) and -0.0222 (-0.026, -0.015) (mg/L)-1, respectively. From these slopes, it can be inferred that both Gd lesion count and ARR decrease with increasing exposure to natalizumab in MS subjects. Model-based simulations demonstrated that although reductions in Gd lesion count and ARR were observed with lower doses (75, 150, or 200 mg), only the dose of 300 mg every 4 weeks (q4w) was associated with an ARR ≤0.25 and was considered clinically effective. The results from the exposure-Gd lesion count and exposure-ARR models thus support the appropriateness of the approved natalizumab dose (300 mg q4w) in MS subjects. More... »

PAGES

263-275

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10928-017-9514-4

DOI

http://dx.doi.org/10.1007/s10928-017-9514-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084028043

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28251386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antibodies, Monoclonal, Humanized", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Clinical Trials as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multiple Sclerosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Natalizumab", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recurrence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biogen (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417832.b", 
          "name": [
            "Systems Pharmacology, Biogen, 14 Cambridge Center, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muralidharan", 
        "givenName": "Kumar Kandadi", 
        "id": "sg:person.016145406501.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016145406501.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biogen (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417832.b", 
          "name": [
            "Clinical Development, Biogen, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steiner", 
        "givenName": "Deb", 
        "id": "sg:person.014424656727.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424656727.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biogen (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417832.b", 
          "name": [
            "Global Medical Affairs, Biogen, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amarante", 
        "givenName": "Diogo", 
        "id": "sg:person.013710434501.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013710434501.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biogen (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417832.b", 
          "name": [
            "Global Medical Affairs, Biogen, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ho", 
        "givenName": "Pei-Ran", 
        "id": "sg:person.015126524421.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015126524421.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biogen (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417832.b", 
          "name": [
            "Clinical Development, Biogen, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikol", 
        "givenName": "Dan", 
        "id": "sg:person.016615200327.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615200327.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biogen (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417832.b", 
          "name": [
            "Clinical Development, Biogen, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elkins", 
        "givenName": "Jacob", 
        "id": "sg:person.0632630700.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632630700.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biogen (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417832.b", 
          "name": [
            "Global Biomarker Discovery and Development, Biogen, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Subramanyam", 
        "givenName": "Meena", 
        "id": "sg:person.01052004072.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052004072.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biogen (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417832.b", 
          "name": [
            "Systems Pharmacology, Biogen, 14 Cambridge Center, 02142, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nestorov", 
        "givenName": "Ivan", 
        "id": "sg:person.0731542654.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731542654.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cmpb.2005.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006146346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0073361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022653676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4780130509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028066263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa020696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028601929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/14737175.4.4.571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000000355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029638249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000000355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029638249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032910450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032910450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.21606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034711830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.21606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034711830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00415-015-7655-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035229942", 
          "https://doi.org/10.1007/s00415-015-7655-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035640805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10928-016-9477-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038397873", 
          "https://doi.org/10.1007/s10928-016-9477-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10928-016-9477-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038397873", 
          "https://doi.org/10.1007/s10928-016-9477-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa044396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047160581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa044397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047413416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/262350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051162825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/psp.2014.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053267332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp-2015-312940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053308260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000158329.30470.d0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064346988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000158329.30470.d0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064346988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000158329.30470.d0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064346988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078186101", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "Natalizumab, a human immunoglobulin monoclonal antibody that targets \u03b14\u03b21/\u03b14\u03b27 integrin, is an effective therapy approved for the treatment of multiple sclerosis (MS). The objective of this analysis was to develop a population exposure-response model utilizing gadolinium-enhancing (Gd) lesion count data from four clinical studies and annualized relapse rate (ARR) data from three clinical studies. The natalizumab exposures were derived for the individuals using a population pharmacokinetic model. A log-linear exposure effect on Gd lesion count and ARR adequately characterized the relationship between exposure and disease response. In the case of the Gd lesion count model, a bimodal model that distributed subjects into two subpopulations based on low or high baseline Gd lesion count provided a superior goodness of fit. The mean (95% confidence interval) slopes from the exposure-Gd lesion count model and exposure-ARR model are -0.0903 (-0.100, -0.081) and -0.0222 (-0.026, -0.015)\u00a0(mg/L)-1, respectively. From these slopes, it can be inferred that both Gd lesion count and ARR decrease with increasing exposure to natalizumab in MS subjects. Model-based simulations demonstrated that although reductions in Gd lesion count and ARR were observed with lower doses (75, 150, or 200\u00a0mg), only the dose of 300\u00a0mg every 4\u00a0weeks (q4w) was associated with an ARR \u22640.25 and was considered clinically effective. The results from the exposure-Gd lesion count and exposure-ARR models thus support the appropriateness of the approved natalizumab dose (300\u00a0mg q4w) in MS subjects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10928-017-9514-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016394", 
        "issn": [
          "1567-567X", 
          "2168-5789"
        ], 
        "name": "Journal of Pharmacokinetics and Pharmacodynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Exposure\u2013disease response analysis of natalizumab in subjects with multiple sclerosis", 
    "pagination": "263-275", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7f41ddbf71191528bf936eaf77512d73fe5ce3eb87a89d2b47fe6d2d41e98378"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28251386"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101096520"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10928-017-9514-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084028043"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10928-017-9514-4", 
      "https://app.dimensions.ai/details/publication/pub.1084028043"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89822_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10928-017-9514-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10928-017-9514-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10928-017-9514-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10928-017-9514-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10928-017-9514-4'


 

This table displays all metadata directly associated to this object as RDF triples.

236 TRIPLES      21 PREDICATES      62 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10928-017-9514-4 schema:about N3cd5b19651f843dfaee02463746ab4e6
2 N427474cb94864445b475e8ae9e9e68cf
3 N5bc8a886e32741c5adf8fa385ad4de7f
4 N6672889e4f3545f4aaf58727f3563092
5 N6ccfcdd8f28c45d89b366ce6939b6443
6 N6fd0db4b651f47718fcb2b4dc61d3bb7
7 N932f6722159e46cb81c1eb26c7136b78
8 N9c14c434a3b84eeca10f260b2a9a617c
9 N9ef874dcbe1944ebb17b58baf058841d
10 Na2a2d60da7a14e2fab56e069d819f46a
11 Naf375455ad464b62b31c537743a732f7
12 Nb8b5c7df7604467aa9db32f5ae8d8edd
13 Nf6646099ec7349758ccfe64cbc0eac22
14 Nf873d13fb82d463a8ecb1d09f407ae08
15 Nff5d5365235f41e48a89c301fce88815
16 anzsrc-for:11
17 anzsrc-for:1117
18 schema:author N74bce77e731e41df8b0ccd025da594a6
19 schema:citation sg:pub.10.1007/s00415-015-7655-1
20 sg:pub.10.1007/s10928-016-9477-x
21 https://app.dimensions.ai/details/publication/pub.1078186101
22 https://doi.org/10.1002/ana.21606
23 https://doi.org/10.1002/sim.2108
24 https://doi.org/10.1002/sim.4394
25 https://doi.org/10.1002/sim.4780130509
26 https://doi.org/10.1016/j.cmpb.2005.04.005
27 https://doi.org/10.1038/psp.2014.27
28 https://doi.org/10.1056/nejmoa020696
29 https://doi.org/10.1056/nejmoa044396
30 https://doi.org/10.1056/nejmoa044397
31 https://doi.org/10.1136/jnnp-2015-312940
32 https://doi.org/10.1155/2014/262350
33 https://doi.org/10.1212/01.wnl.0000158329.30470.d0
34 https://doi.org/10.1212/wnl.0000000000000355
35 https://doi.org/10.1371/journal.pone.0073361
36 https://doi.org/10.1586/14737175.4.4.571
37 schema:datePublished 2017-06
38 schema:datePublishedReg 2017-06-01
39 schema:description Natalizumab, a human immunoglobulin monoclonal antibody that targets α<sub>4</sub>β<sub>1</sub>/α<sub>4</sub>β<sub>7</sub> integrin, is an effective therapy approved for the treatment of multiple sclerosis (MS). The objective of this analysis was to develop a population exposure-response model utilizing gadolinium-enhancing (Gd) lesion count data from four clinical studies and annualized relapse rate (ARR) data from three clinical studies. The natalizumab exposures were derived for the individuals using a population pharmacokinetic model. A log-linear exposure effect on Gd lesion count and ARR adequately characterized the relationship between exposure and disease response. In the case of the Gd lesion count model, a bimodal model that distributed subjects into two subpopulations based on low or high baseline Gd lesion count provided a superior goodness of fit. The mean (95% confidence interval) slopes from the exposure-Gd lesion count model and exposure-ARR model are -0.0903 (-0.100, -0.081) and -0.0222 (-0.026, -0.015) (mg/L)<sup>-1</sup>, respectively. From these slopes, it can be inferred that both Gd lesion count and ARR decrease with increasing exposure to natalizumab in MS subjects. Model-based simulations demonstrated that although reductions in Gd lesion count and ARR were observed with lower doses (75, 150, or 200 mg), only the dose of 300 mg every 4 weeks (q4w) was associated with an ARR ≤0.25 and was considered clinically effective. The results from the exposure-Gd lesion count and exposure-ARR models thus support the appropriateness of the approved natalizumab dose (300 mg q4w) in MS subjects.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N216dc0422cd941cc875fbaa83980e4b1
44 Ne27a3540894043619baf36086888bacf
45 sg:journal.1016394
46 schema:name Exposure–disease response analysis of natalizumab in subjects with multiple sclerosis
47 schema:pagination 263-275
48 schema:productId N0066a019f2ab4d21b5a950cdea1c770e
49 N0da26e6c368c465ca8a7560297e45205
50 N4f6ce052a8e046b2a34d903b691b1cef
51 N6d9d786b98254c1c99d12e70e09c2b15
52 Nfec1d9862f6247cf97772eec0f328930
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084028043
54 https://doi.org/10.1007/s10928-017-9514-4
55 schema:sdDatePublished 2019-04-11T10:02
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N3db7e2ff372d45fcb939494214fc071e
58 schema:url https://link.springer.com/10.1007%2Fs10928-017-9514-4
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0066a019f2ab4d21b5a950cdea1c770e schema:name doi
63 schema:value 10.1007/s10928-017-9514-4
64 rdf:type schema:PropertyValue
65 N0da26e6c368c465ca8a7560297e45205 schema:name pubmed_id
66 schema:value 28251386
67 rdf:type schema:PropertyValue
68 N0dfab83f7cf74cf7a6550dd37c643e70 rdf:first sg:person.015126524421.85
69 rdf:rest Nd3e1097e189b4f5195d75606df5c840e
70 N216dc0422cd941cc875fbaa83980e4b1 schema:issueNumber 3
71 rdf:type schema:PublicationIssue
72 N3cd5b19651f843dfaee02463746ab4e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Multiple Sclerosis
74 rdf:type schema:DefinedTerm
75 N3db7e2ff372d45fcb939494214fc071e schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N427474cb94864445b475e8ae9e9e68cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Aged
79 rdf:type schema:DefinedTerm
80 N4f6ce052a8e046b2a34d903b691b1cef schema:name nlm_unique_id
81 schema:value 101096520
82 rdf:type schema:PropertyValue
83 N5bc8a886e32741c5adf8fa385ad4de7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Treatment Outcome
85 rdf:type schema:DefinedTerm
86 N61e92b2198154318983070019c7a0995 rdf:first sg:person.013710434501.18
87 rdf:rest N0dfab83f7cf74cf7a6550dd37c643e70
88 N6672889e4f3545f4aaf58727f3563092 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Female
90 rdf:type schema:DefinedTerm
91 N6ccfcdd8f28c45d89b366ce6939b6443 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Natalizumab
93 rdf:type schema:DefinedTerm
94 N6d9d786b98254c1c99d12e70e09c2b15 schema:name readcube_id
95 schema:value 7f41ddbf71191528bf936eaf77512d73fe5ce3eb87a89d2b47fe6d2d41e98378
96 rdf:type schema:PropertyValue
97 N6fd0db4b651f47718fcb2b4dc61d3bb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Clinical Trials as Topic
99 rdf:type schema:DefinedTerm
100 N74bce77e731e41df8b0ccd025da594a6 rdf:first sg:person.016145406501.06
101 rdf:rest Nd98d5fec9fda461585357b78bf4e7feb
102 N862e6e2ce494412eaa4a38eb693753c8 rdf:first sg:person.0731542654.93
103 rdf:rest rdf:nil
104 N932f6722159e46cb81c1eb26c7136b78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Adolescent
106 rdf:type schema:DefinedTerm
107 N9c14c434a3b84eeca10f260b2a9a617c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Recurrence
109 rdf:type schema:DefinedTerm
110 N9ef874dcbe1944ebb17b58baf058841d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Young Adult
112 rdf:type schema:DefinedTerm
113 Na2a2d60da7a14e2fab56e069d819f46a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Gadolinium
115 rdf:type schema:DefinedTerm
116 Nacbffa84f424469f830dacaf849e455e rdf:first sg:person.01052004072.92
117 rdf:rest N862e6e2ce494412eaa4a38eb693753c8
118 Naf375455ad464b62b31c537743a732f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Adult
120 rdf:type schema:DefinedTerm
121 Nb8b5c7df7604467aa9db32f5ae8d8edd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Middle Aged
123 rdf:type schema:DefinedTerm
124 Nd3e1097e189b4f5195d75606df5c840e rdf:first sg:person.016615200327.27
125 rdf:rest Nd93aeee4d6d04fd6bf4afdfc8ca6e21e
126 Nd93aeee4d6d04fd6bf4afdfc8ca6e21e rdf:first sg:person.0632630700.05
127 rdf:rest Nacbffa84f424469f830dacaf849e455e
128 Nd98d5fec9fda461585357b78bf4e7feb rdf:first sg:person.014424656727.95
129 rdf:rest N61e92b2198154318983070019c7a0995
130 Ne27a3540894043619baf36086888bacf schema:volumeNumber 44
131 rdf:type schema:PublicationVolume
132 Nf6646099ec7349758ccfe64cbc0eac22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 Nf873d13fb82d463a8ecb1d09f407ae08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Male
137 rdf:type schema:DefinedTerm
138 Nfec1d9862f6247cf97772eec0f328930 schema:name dimensions_id
139 schema:value pub.1084028043
140 rdf:type schema:PropertyValue
141 Nff5d5365235f41e48a89c301fce88815 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Antibodies, Monoclonal, Humanized
143 rdf:type schema:DefinedTerm
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
148 schema:name Public Health and Health Services
149 rdf:type schema:DefinedTerm
150 sg:journal.1016394 schema:issn 1567-567X
151 2168-5789
152 schema:name Journal of Pharmacokinetics and Pharmacodynamics
153 rdf:type schema:Periodical
154 sg:person.01052004072.92 schema:affiliation https://www.grid.ac/institutes/grid.417832.b
155 schema:familyName Subramanyam
156 schema:givenName Meena
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052004072.92
158 rdf:type schema:Person
159 sg:person.013710434501.18 schema:affiliation https://www.grid.ac/institutes/grid.417832.b
160 schema:familyName Amarante
161 schema:givenName Diogo
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013710434501.18
163 rdf:type schema:Person
164 sg:person.014424656727.95 schema:affiliation https://www.grid.ac/institutes/grid.417832.b
165 schema:familyName Steiner
166 schema:givenName Deb
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424656727.95
168 rdf:type schema:Person
169 sg:person.015126524421.85 schema:affiliation https://www.grid.ac/institutes/grid.417832.b
170 schema:familyName Ho
171 schema:givenName Pei-Ran
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015126524421.85
173 rdf:type schema:Person
174 sg:person.016145406501.06 schema:affiliation https://www.grid.ac/institutes/grid.417832.b
175 schema:familyName Muralidharan
176 schema:givenName Kumar Kandadi
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016145406501.06
178 rdf:type schema:Person
179 sg:person.016615200327.27 schema:affiliation https://www.grid.ac/institutes/grid.417832.b
180 schema:familyName Mikol
181 schema:givenName Dan
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615200327.27
183 rdf:type schema:Person
184 sg:person.0632630700.05 schema:affiliation https://www.grid.ac/institutes/grid.417832.b
185 schema:familyName Elkins
186 schema:givenName Jacob
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632630700.05
188 rdf:type schema:Person
189 sg:person.0731542654.93 schema:affiliation https://www.grid.ac/institutes/grid.417832.b
190 schema:familyName Nestorov
191 schema:givenName Ivan
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731542654.93
193 rdf:type schema:Person
194 sg:pub.10.1007/s00415-015-7655-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035229942
195 https://doi.org/10.1007/s00415-015-7655-1
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s10928-016-9477-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038397873
198 https://doi.org/10.1007/s10928-016-9477-x
199 rdf:type schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1078186101 schema:CreativeWork
201 https://doi.org/10.1002/ana.21606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034711830
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/sim.2108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032910450
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/sim.4394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035640805
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1002/sim.4780130509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028066263
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.cmpb.2005.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006146346
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1038/psp.2014.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053267332
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1056/nejmoa020696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028601929
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1056/nejmoa044396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047160581
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1056/nejmoa044397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047413416
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1136/jnnp-2015-312940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053308260
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1155/2014/262350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051162825
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1212/01.wnl.0000158329.30470.d0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064346988
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1212/wnl.0000000000000355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029638249
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1371/journal.pone.0073361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022653676
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1586/14737175.4.4.571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029452571
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.417832.b schema:alternateName Biogen (United States)
232 schema:name Clinical Development, Biogen, Cambridge, MA, USA
233 Global Biomarker Discovery and Development, Biogen, Cambridge, MA, USA
234 Global Medical Affairs, Biogen, Cambridge, MA, USA
235 Systems Pharmacology, Biogen, 14 Cambridge Center, 02142, Cambridge, MA, USA
236 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...