Modelling Response Time Profiles in the Absence of Drug Concentrations: Definition and Performance Evaluation of the K–PD Model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-10-19

AUTHORS

P. Jacqmin, E. Snoeck, E.A. van Schaick, R. Gieschke, P. Pillai, J.-L. Steimer, P. Girard

ABSTRACT

The plasma concentration–time profile of a drug is essential to explain the relationship between the administered dose and the kinetics of drug action. However, in some cases such as in pre-clinical pharmacology or phase-III clinical studies where it is not always possible to collect all the required PK information, this relationship can be difficult to establish. In these circumstances several authors have proposed simple models that can analyse and simulate the kinetics of the drug action in the absence of PK data. The present work further develops and evaluates the performance of such an approach. A virtual compartment representing the biophase in which the concentration is in equilibrium with the observed effect is used to extract the (pharmaco)kinetic component from the pharmacodynamic data alone. Parameters of this model are the elimination rate constant from the virtual compartment (KDE), which describes the equilibrium between the rate of dose administration and the observed effect, and the second parameter, named EDK50 which is the apparent in vivo potency of the drug at steady state, analogous to the product of EC50, the pharmacodynamic potency, and clearance, the PK “potency” at steady state. Using population simulation and subsequent (blinded) analysis to evaluate this approach, it is demonstrated that the proposed model usually performs well and can be used for predictive simulations in drug development. However, there are several important limitations to this approach. For example, the investigated doses should extend from those producing responses well below the EC50 to those producing ones close to the maximum response, optimally reach steady state response and followed until the response returns to baseline. It is shown that large inter-individual variability on PK–PD parameters will produce biases as well as large imprecision on parameter estimates. It is also clear that extrapolations to dosage routes or schedules other than those used to estimate the parameters should be undertaken with great caution (e.g., in case of non-linearity or complex drug distribution). Consequently, it is advised to apply this approach only when the underlying structural PD and PK are well understood. In any case, K–PD model should definitively not be substituted for the gold standard PK–PD model when correct full model can and should be identified. More... »

PAGES

57-85

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10928-006-9035-z

DOI

http://dx.doi.org/10.1007/s10928-006-9035-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029869998

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17051439


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine A1 Receptor Agonists", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dose-Response Relationship, Drug", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Administration Schedule", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats, Wistar", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Exprimo NV, Berenlaan, 4, B-2340, Beerse, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Exprimo NV, Berenlaan, 4, B-2340, Beerse, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacqmin", 
        "givenName": "P.", 
        "id": "sg:person.01005111552.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005111552.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Exprimo NV, Berenlaan, 4, B-2340, Beerse, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Exprimo NV, Berenlaan, 4, B-2340, Beerse, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Snoeck", 
        "givenName": "E.", 
        "id": "sg:person.01267607537.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267607537.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Exprimo NV, Berenlaan, 4, B-2340, Beerse, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Exprimo NV, Berenlaan, 4, B-2340, Beerse, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Schaick", 
        "givenName": "E.A.", 
        "id": "sg:person.0621520615.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621520615.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Modeling and Simulation Team, Pharma Development, F. Hoffmann-La Roche, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.417570.0", 
          "name": [
            "Modeling and Simulation Team, Pharma Development, F. Hoffmann-La Roche, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gieschke", 
        "givenName": "R.", 
        "id": "sg:person.01372323431.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372323431.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Modeling and Simulation, Novartis Pharma AG, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.419481.1", 
          "name": [
            "Modeling and Simulation, Novartis Pharma AG, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pillai", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Modeling and Simulation, Novartis Pharma AG, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.419481.1", 
          "name": [
            "Modeling and Simulation, Novartis Pharma AG, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steimer", 
        "givenName": "J.-L.", 
        "id": "sg:person.0643604054.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643604054.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Facult\u00e9 de m\u00e9decine Lyon Sud, Universit\u00e9 Lyon 1, EA3738, CTO, F-69600, Oullins, France", 
          "id": "http://www.grid.ac/institutes/grid.7849.2", 
          "name": [
            "Universit\u00e9 de Lyon, F-69003, Lyon, France", 
            "Facult\u00e9 de m\u00e9decine Lyon Sud, Universit\u00e9 Lyon 1, EA3738, CTO, F-69600, Oullins, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girard", 
        "givenName": "P.", 
        "id": "sg:person.012661201622.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02353780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052104311", 
          "https://doi.org/10.1007/bf02353780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01080874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022518677", 
          "https://doi.org/10.1007/bf01080874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0009-9236(99)70120-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040288773", 
          "https://doi.org/10.1016/s0009-9236(99)70120-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-66537-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020926244", 
          "https://doi.org/10.1007/978-3-642-66537-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.1994.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052525385", 
          "https://doi.org/10.1038/clpt.1994.155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020943029130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017688202", 
          "https://doi.org/10.1023/a:1020943029130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01059771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002999063", 
          "https://doi.org/10.1007/bf01059771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020953107162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038688629", 
          "https://doi.org/10.1023/a:1020953107162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02353542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050506984", 
          "https://doi.org/10.1007/bf02353542"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-10-19", 
    "datePublishedReg": "2006-10-19", 
    "description": "The plasma concentration\u2013time profile of a drug is essential to explain the relationship between the administered dose and the kinetics of drug action. However, in some cases such as in pre-clinical pharmacology or phase-III clinical studies where it is not always possible to collect all the required PK information, this relationship can be difficult to establish. In these circumstances several authors have proposed simple models that can analyse and simulate the kinetics of the drug action in the absence of PK data. The present work further develops and evaluates the performance of such an approach. A virtual compartment representing the biophase in which the concentration is in equilibrium with the observed effect is used to extract the (pharmaco)kinetic component from the pharmacodynamic data alone. Parameters of this model are the elimination rate constant from the virtual compartment (KDE), which describes the equilibrium between the rate of dose administration and the observed effect, and the second parameter, named EDK50 which is the apparent in vivo potency of the drug at steady state, analogous to the product of EC50, the pharmacodynamic potency, and clearance, the PK \u201cpotency\u201d at steady state. Using population simulation and subsequent (blinded) analysis to evaluate this approach, it is demonstrated that the proposed model usually performs well and can be used for predictive simulations in drug development. However, there are several important limitations to this approach. For example, the investigated doses should extend from those producing responses well below the EC50 to those producing ones close to the maximum response, optimally reach steady state response and followed until the response returns to baseline. It is shown that large inter-individual variability on PK\u2013PD parameters will produce biases as well as large imprecision on parameter estimates. It is also clear that extrapolations to dosage routes or schedules other than those used to estimate the parameters should be undertaken with great caution (e.g., in case of non-linearity or complex drug distribution). Consequently, it is advised to apply this approach only when the underlying structural PD and PK are well understood. In any case, K\u2013PD model should definitively not be substituted for the gold standard PK\u2013PD model when correct full model can and should be identified.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10928-006-9035-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016394", 
        "issn": [
          "1567-567X", 
          "2168-5789"
        ], 
        "name": "Journal of Pharmacokinetics and Pharmacodynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "K-PD model", 
      "phase III clinical studies", 
      "drug action", 
      "pre-clinical pharmacology", 
      "PK-PD parameters", 
      "plasma concentration-time profiles", 
      "PK-PD model", 
      "large inter-individual variability", 
      "concentration-time profiles", 
      "inter-individual variability", 
      "dose administration", 
      "clinical studies", 
      "pharmacodynamic potency", 
      "pharmacodynamic data", 
      "PK data", 
      "PK information", 
      "vivo potency", 
      "drug concentrations", 
      "elimination rate", 
      "drug development", 
      "maximum response", 
      "virtual compartment", 
      "drugs", 
      "potency", 
      "observed effects", 
      "EC50", 
      "great caution", 
      "response", 
      "dose", 
      "administration", 
      "doses", 
      "baseline", 
      "clearance", 
      "pharmacology", 
      "compartments", 
      "important limitations", 
      "absence", 
      "biophase", 
      "cases", 
      "response time profiles", 
      "action", 
      "rate", 
      "PK", 
      "effect", 
      "subsequent analysis", 
      "caution", 
      "profile", 
      "large imprecision", 
      "concentration", 
      "data", 
      "schedule", 
      "relationship", 
      "study", 
      "steady-state response", 
      "evaluation", 
      "time profiles", 
      "steady state", 
      "full model", 
      "model", 
      "development", 
      "imprecision", 
      "approach", 
      "analysis", 
      "variability", 
      "Pd", 
      "parameters", 
      "circumstances", 
      "authors", 
      "limitations", 
      "route", 
      "information", 
      "definition", 
      "state", 
      "components", 
      "kinetics", 
      "state response", 
      "estimates", 
      "products", 
      "present work", 
      "extrapolation", 
      "population simulations", 
      "parameter estimates", 
      "one", 
      "biases", 
      "second parameter", 
      "work", 
      "performance", 
      "example", 
      "predictive simulations", 
      "equilibrium", 
      "simple model", 
      "performance evaluation", 
      "simulations"
    ], 
    "name": "Modelling Response Time Profiles in the Absence of Drug Concentrations: Definition and Performance Evaluation of the K\u2013PD Model", 
    "pagination": "57-85", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029869998"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10928-006-9035-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17051439"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10928-006-9035-z", 
      "https://app.dimensions.ai/details/publication/pub.1029869998"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_415.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10928-006-9035-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10928-006-9035-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10928-006-9035-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10928-006-9035-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10928-006-9035-z'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      21 PREDICATES      143 URIs      126 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10928-006-9035-z schema:about N11b78d5528d74496825b884f1933f403
2 N189ca677bb5246d191abd28c9bc92a79
3 N2dbf4c6638354fd1b0a98dcbd505679b
4 N3c215c75fd4a4d7a9152da9dd81d2d51
5 N4ba343ee534048509b6fee22acaa0fa1
6 N64e918f544cd4eaea37709fbea39bcdc
7 N6db4888704184db4a9a80828afd863ab
8 N7416fdb0ab9140ffb87256f670e2130c
9 N791010070f95456fa9ebcfe8418c68ad
10 N8ad8467737864128b5e3b82a991f6e58
11 Na7fe55ef50504158aea8422b22694606
12 Nc3d2ffd35149444a811385eb958efbf8
13 Nc5047dc1a93e4db58126dd48a2ca3f4b
14 Nd74761b1ed1446eca11f94124bdca820
15 Ne502da1291c4402ead2c974834af3f13
16 Neef87b5ea56f44a19905a09ccf787cc9
17 anzsrc-for:11
18 anzsrc-for:1115
19 schema:author Ndda948b14c874f16bca00309874be724
20 schema:citation sg:pub.10.1007/978-3-642-66537-0
21 sg:pub.10.1007/bf01059771
22 sg:pub.10.1007/bf01080874
23 sg:pub.10.1007/bf02353542
24 sg:pub.10.1007/bf02353780
25 sg:pub.10.1016/s0009-9236(99)70120-7
26 sg:pub.10.1023/a:1020943029130
27 sg:pub.10.1023/a:1020953107162
28 sg:pub.10.1038/clpt.1994.155
29 schema:datePublished 2006-10-19
30 schema:datePublishedReg 2006-10-19
31 schema:description The plasma concentration–time profile of a drug is essential to explain the relationship between the administered dose and the kinetics of drug action. However, in some cases such as in pre-clinical pharmacology or phase-III clinical studies where it is not always possible to collect all the required PK information, this relationship can be difficult to establish. In these circumstances several authors have proposed simple models that can analyse and simulate the kinetics of the drug action in the absence of PK data. The present work further develops and evaluates the performance of such an approach. A virtual compartment representing the biophase in which the concentration is in equilibrium with the observed effect is used to extract the (pharmaco)kinetic component from the pharmacodynamic data alone. Parameters of this model are the elimination rate constant from the virtual compartment (KDE), which describes the equilibrium between the rate of dose administration and the observed effect, and the second parameter, named EDK50 which is the apparent in vivo potency of the drug at steady state, analogous to the product of EC50, the pharmacodynamic potency, and clearance, the PK “potency” at steady state. Using population simulation and subsequent (blinded) analysis to evaluate this approach, it is demonstrated that the proposed model usually performs well and can be used for predictive simulations in drug development. However, there are several important limitations to this approach. For example, the investigated doses should extend from those producing responses well below the EC50 to those producing ones close to the maximum response, optimally reach steady state response and followed until the response returns to baseline. It is shown that large inter-individual variability on PK–PD parameters will produce biases as well as large imprecision on parameter estimates. It is also clear that extrapolations to dosage routes or schedules other than those used to estimate the parameters should be undertaken with great caution (e.g., in case of non-linearity or complex drug distribution). Consequently, it is advised to apply this approach only when the underlying structural PD and PK are well understood. In any case, K–PD model should definitively not be substituted for the gold standard PK–PD model when correct full model can and should be identified.
32 schema:genre article
33 schema:isAccessibleForFree false
34 schema:isPartOf Na63a6f3fcd6046ca8175aaa0739387dc
35 Ne84968151ba543cb95f116d548f78861
36 sg:journal.1016394
37 schema:keywords EC50
38 K-PD model
39 PK
40 PK data
41 PK information
42 PK-PD model
43 PK-PD parameters
44 Pd
45 absence
46 action
47 administration
48 analysis
49 approach
50 authors
51 baseline
52 biases
53 biophase
54 cases
55 caution
56 circumstances
57 clearance
58 clinical studies
59 compartments
60 components
61 concentration
62 concentration-time profiles
63 data
64 definition
65 development
66 dose
67 dose administration
68 doses
69 drug action
70 drug concentrations
71 drug development
72 drugs
73 effect
74 elimination rate
75 equilibrium
76 estimates
77 evaluation
78 example
79 extrapolation
80 full model
81 great caution
82 important limitations
83 imprecision
84 information
85 inter-individual variability
86 kinetics
87 large imprecision
88 large inter-individual variability
89 limitations
90 maximum response
91 model
92 observed effects
93 one
94 parameter estimates
95 parameters
96 performance
97 performance evaluation
98 pharmacodynamic data
99 pharmacodynamic potency
100 pharmacology
101 phase III clinical studies
102 plasma concentration-time profiles
103 population simulations
104 potency
105 pre-clinical pharmacology
106 predictive simulations
107 present work
108 products
109 profile
110 rate
111 relationship
112 response
113 response time profiles
114 route
115 schedule
116 second parameter
117 simple model
118 simulations
119 state
120 state response
121 steady state
122 steady-state response
123 study
124 subsequent analysis
125 time profiles
126 variability
127 virtual compartment
128 vivo potency
129 work
130 schema:name Modelling Response Time Profiles in the Absence of Drug Concentrations: Definition and Performance Evaluation of the K–PD Model
131 schema:pagination 57-85
132 schema:productId N2655adaee9094b05a65626087a3164f0
133 N4d2a0c4cbfe64ca0a9551b1a7cde2e14
134 Nd3aa122d06134cfa9576add1699bc180
135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029869998
136 https://doi.org/10.1007/s10928-006-9035-z
137 schema:sdDatePublished 2022-09-02T15:52
138 schema:sdLicense https://scigraph.springernature.com/explorer/license/
139 schema:sdPublisher N0fd66d90e9e84431b111d4119a48dbed
140 schema:url https://doi.org/10.1007/s10928-006-9035-z
141 sgo:license sg:explorer/license/
142 sgo:sdDataset articles
143 rdf:type schema:ScholarlyArticle
144 N0fd66d90e9e84431b111d4119a48dbed schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 N11b78d5528d74496825b884f1933f403 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Animals
148 rdf:type schema:DefinedTerm
149 N189ca677bb5246d191abd28c9bc92a79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Lipolysis
151 rdf:type schema:DefinedTerm
152 N2655adaee9094b05a65626087a3164f0 schema:name pubmed_id
153 schema:value 17051439
154 rdf:type schema:PropertyValue
155 N2dbf4c6638354fd1b0a98dcbd505679b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Adenosine A1 Receptor Agonists
157 rdf:type schema:DefinedTerm
158 N3998d8c3c46145cbac21eb9daf0084fa rdf:first sg:person.0621520615.46
159 rdf:rest Nedd3918388a04941a469b91fedaf037e
160 N3c215c75fd4a4d7a9152da9dd81d2d51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Reproducibility of Results
162 rdf:type schema:DefinedTerm
163 N43c1b77f985e4e9dbc36960aecbce3e9 rdf:first sg:person.0643604054.31
164 rdf:rest Nb75cdfd5dd9b4dd3b08a18366bd738e1
165 N44452a5cd4574012975b390827234a64 rdf:first N7fedeb7ff192468dbc66759798432221
166 rdf:rest N43c1b77f985e4e9dbc36960aecbce3e9
167 N4ba343ee534048509b6fee22acaa0fa1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Time Factors
169 rdf:type schema:DefinedTerm
170 N4d2a0c4cbfe64ca0a9551b1a7cde2e14 schema:name dimensions_id
171 schema:value pub.1029869998
172 rdf:type schema:PropertyValue
173 N5c1321c59076433a92e63d676bba1862 rdf:first sg:person.01267607537.65
174 rdf:rest N3998d8c3c46145cbac21eb9daf0084fa
175 N64e918f544cd4eaea37709fbea39bcdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Rats, Wistar
177 rdf:type schema:DefinedTerm
178 N6db4888704184db4a9a80828afd863ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Data Interpretation, Statistical
180 rdf:type schema:DefinedTerm
181 N7416fdb0ab9140ffb87256f670e2130c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Humans
183 rdf:type schema:DefinedTerm
184 N791010070f95456fa9ebcfe8418c68ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Adenosine
186 rdf:type schema:DefinedTerm
187 N7fedeb7ff192468dbc66759798432221 schema:affiliation grid-institutes:grid.419481.1
188 schema:familyName Pillai
189 schema:givenName P.
190 rdf:type schema:Person
191 N8ad8467737864128b5e3b82a991f6e58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Models, Statistical
193 rdf:type schema:DefinedTerm
194 Na63a6f3fcd6046ca8175aaa0739387dc schema:issueNumber 1
195 rdf:type schema:PublicationIssue
196 Na7fe55ef50504158aea8422b22694606 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Dose-Response Relationship, Drug
198 rdf:type schema:DefinedTerm
199 Nb75cdfd5dd9b4dd3b08a18366bd738e1 rdf:first sg:person.012661201622.56
200 rdf:rest rdf:nil
201 Nc3d2ffd35149444a811385eb958efbf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Models, Biological
203 rdf:type schema:DefinedTerm
204 Nc5047dc1a93e4db58126dd48a2ca3f4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Drug Administration Schedule
206 rdf:type schema:DefinedTerm
207 Nd3aa122d06134cfa9576add1699bc180 schema:name doi
208 schema:value 10.1007/s10928-006-9035-z
209 rdf:type schema:PropertyValue
210 Nd74761b1ed1446eca11f94124bdca820 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Rats
212 rdf:type schema:DefinedTerm
213 Ndda948b14c874f16bca00309874be724 rdf:first sg:person.01005111552.40
214 rdf:rest N5c1321c59076433a92e63d676bba1862
215 Ne502da1291c4402ead2c974834af3f13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Male
217 rdf:type schema:DefinedTerm
218 Ne84968151ba543cb95f116d548f78861 schema:volumeNumber 34
219 rdf:type schema:PublicationVolume
220 Nedd3918388a04941a469b91fedaf037e rdf:first sg:person.01372323431.58
221 rdf:rest N44452a5cd4574012975b390827234a64
222 Neef87b5ea56f44a19905a09ccf787cc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Computer Simulation
224 rdf:type schema:DefinedTerm
225 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
226 schema:name Medical and Health Sciences
227 rdf:type schema:DefinedTerm
228 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
229 schema:name Pharmacology and Pharmaceutical Sciences
230 rdf:type schema:DefinedTerm
231 sg:journal.1016394 schema:issn 1567-567X
232 2168-5789
233 schema:name Journal of Pharmacokinetics and Pharmacodynamics
234 schema:publisher Springer Nature
235 rdf:type schema:Periodical
236 sg:person.01005111552.40 schema:affiliation grid-institutes:None
237 schema:familyName Jacqmin
238 schema:givenName P.
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005111552.40
240 rdf:type schema:Person
241 sg:person.012661201622.56 schema:affiliation grid-institutes:grid.7849.2
242 schema:familyName Girard
243 schema:givenName P.
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56
245 rdf:type schema:Person
246 sg:person.01267607537.65 schema:affiliation grid-institutes:None
247 schema:familyName Snoeck
248 schema:givenName E.
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267607537.65
250 rdf:type schema:Person
251 sg:person.01372323431.58 schema:affiliation grid-institutes:grid.417570.0
252 schema:familyName Gieschke
253 schema:givenName R.
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372323431.58
255 rdf:type schema:Person
256 sg:person.0621520615.46 schema:affiliation grid-institutes:None
257 schema:familyName van Schaick
258 schema:givenName E.A.
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621520615.46
260 rdf:type schema:Person
261 sg:person.0643604054.31 schema:affiliation grid-institutes:grid.419481.1
262 schema:familyName Steimer
263 schema:givenName J.-L.
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643604054.31
265 rdf:type schema:Person
266 sg:pub.10.1007/978-3-642-66537-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020926244
267 https://doi.org/10.1007/978-3-642-66537-0
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/bf01059771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002999063
270 https://doi.org/10.1007/bf01059771
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/bf01080874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022518677
273 https://doi.org/10.1007/bf01080874
274 rdf:type schema:CreativeWork
275 sg:pub.10.1007/bf02353542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050506984
276 https://doi.org/10.1007/bf02353542
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/bf02353780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052104311
279 https://doi.org/10.1007/bf02353780
280 rdf:type schema:CreativeWork
281 sg:pub.10.1016/s0009-9236(99)70120-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040288773
282 https://doi.org/10.1016/s0009-9236(99)70120-7
283 rdf:type schema:CreativeWork
284 sg:pub.10.1023/a:1020943029130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017688202
285 https://doi.org/10.1023/a:1020943029130
286 rdf:type schema:CreativeWork
287 sg:pub.10.1023/a:1020953107162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038688629
288 https://doi.org/10.1023/a:1020953107162
289 rdf:type schema:CreativeWork
290 sg:pub.10.1038/clpt.1994.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052525385
291 https://doi.org/10.1038/clpt.1994.155
292 rdf:type schema:CreativeWork
293 grid-institutes:None schema:alternateName Exprimo NV, Berenlaan, 4, B-2340, Beerse, Belgium
294 schema:name Exprimo NV, Berenlaan, 4, B-2340, Beerse, Belgium
295 rdf:type schema:Organization
296 grid-institutes:grid.417570.0 schema:alternateName Modeling and Simulation Team, Pharma Development, F. Hoffmann-La Roche, Basel, Switzerland
297 schema:name Modeling and Simulation Team, Pharma Development, F. Hoffmann-La Roche, Basel, Switzerland
298 rdf:type schema:Organization
299 grid-institutes:grid.419481.1 schema:alternateName Modeling and Simulation, Novartis Pharma AG, Basel, Switzerland
300 schema:name Modeling and Simulation, Novartis Pharma AG, Basel, Switzerland
301 rdf:type schema:Organization
302 grid-institutes:grid.7849.2 schema:alternateName Faculté de médecine Lyon Sud, Université Lyon 1, EA3738, CTO, F-69600, Oullins, France
303 schema:name Faculté de médecine Lyon Sud, Université Lyon 1, EA3738, CTO, F-69600, Oullins, France
304 Université de Lyon, F-69003, Lyon, France
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...