Prediction Discrepancies for the Evaluation of Nonlinear Mixed-Effects Models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-06

AUTHORS

France Mentré, Sylvie Escolano

ABSTRACT

Reliable estimation methods for non-linear mixed-effects models are now available and, although these models are increasingly used, only a limited number of statistical developments for their evaluation have been reported. We develop a criterion and a test to evaluate nonlinear mixed-effects models based on the whole predictive distribution. For each observation, we define the prediction discrepancy (pd) as the percentile of the observation in the whole marginal predictive distribution under H(0). We propose to compute prediction discrepancies using Monte Carlo integration which does not require model approximation. If the model is valid, these pd should be uniformly distributed over (0, 1) which can be tested by a Kolmogorov-Smirnov test. In a simulation study based on a standard population pharmacokinetic model, we compare and show the interest of this criterion with respect to the one most frequently used to evaluate nonlinear mixed-effects models: standardized prediction errors (spe) which are evaluated using a first order approximation of the model. Trends in pd can also be evaluated via several plots to check for specific departures from the model. More... »

PAGES

345-367

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4

DOI

http://dx.doi.org/10.1007/s10928-005-0016-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015863917

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16284919


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacokinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistical Distributions", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "INSERM, U738, 46 rue Henri Huchard, 75018, Paris, France", 
            "Department of Epidemiology, Biostatistics and Clinical Research, University Paris 7, 75018, Paris, France", 
            "University Hospital Bichat \u2013 Claude Bernard, 75018, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mentr\u00e9", 
        "givenName": "France", 
        "id": "sg:person.0722247775.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722247775.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9l\u00e9gation Paris 11", 
          "id": "https://www.grid.ac/institutes/grid.457369.a", 
          "name": [
            "INSERM, U 472, 94800, Villejuif Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Escolano", 
        "givenName": "Sylvie", 
        "id": "sg:person.01025210630.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025210630.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.2165/00003088-199936040-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006217236", 
          "https://doi.org/10.2165/00003088-199936040-00001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02353641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008936461", 
          "https://doi.org/10.1007/bf02353641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/00912700022009530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009074459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026142601822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011031340", 
          "https://doi.org/10.1023/a:1026142601822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10543409508835104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012461159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203910276.ch5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013734192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pharmtox.40.1.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014703851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(97)00012-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017898851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020505722924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024194641", 
          "https://doi.org/10.1023/a:1020505722924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011555016423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032175473", 
          "https://doi.org/10.1023/a:1011555016423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0928-0987(01)00096-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033937809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pharmtox.40.1.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050091365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2000.10474265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/73.3.645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059419639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176347130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2669749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070052377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2669750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070052378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2669752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070052380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109704884", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-0318-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109704884", 
          "https://doi.org/10.1007/978-1-4419-0318-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705877", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3242-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705877", 
          "https://doi.org/10.1007/978-1-4899-3242-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3242-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705877", 
          "https://doi.org/10.1007/978-1-4899-3242-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-06", 
    "datePublishedReg": "2006-06-01", 
    "description": "Reliable estimation methods for non-linear mixed-effects models are now available and, although these models are increasingly used, only a limited number of statistical developments for their evaluation have been reported. We develop a criterion and a test to evaluate nonlinear mixed-effects models based on the whole predictive distribution. For each observation, we define the prediction discrepancy (pd) as the percentile of the observation in the whole marginal predictive distribution under H(0). We propose to compute prediction discrepancies using Monte Carlo integration which does not require model approximation. If the model is valid, these pd should be uniformly distributed over (0, 1) which can be tested by a Kolmogorov-Smirnov test. In a simulation study based on a standard population pharmacokinetic model, we compare and show the interest of this criterion with respect to the one most frequently used to evaluate nonlinear mixed-effects models: standardized prediction errors (spe) which are evaluated using a first order approximation of the model. Trends in pd can also be evaluated via several plots to check for specific departures from the model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10928-005-0016-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1016394", 
        "issn": [
          "1567-567X", 
          "2168-5789"
        ], 
        "name": "Journal of Pharmacokinetics and Pharmacodynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "Prediction Discrepancies for the Evaluation of Nonlinear Mixed-Effects Models", 
    "pagination": "345-367", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b969fed427577ea60320f57e76b16116d58027339c37f1f92a3a0e9bc55b73e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16284919"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101096520"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10928-005-0016-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015863917"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10928-005-0016-4", 
      "https://app.dimensions.ai/details/publication/pub.1015863917"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10928-005-0016-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      59 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10928-005-0016-4 schema:about N0302e96044fa4680bce4679130091972
2 N164af7593f0441c789b1543d4dcdd47f
3 N3e0a8c4f1e774cd7b434aa33bd7cf624
4 N525edeb155be421faa47dbe9e08eea01
5 N80a703f07d074f3693dcdabc34c1eda0
6 Nbcd74fec6b51428694b45bfe592ed886
7 Nd954b7d9032f474c8f8c6e2cc67186a3
8 Nfcdf72e1469e4fe7bf8deccb72e4ebca
9 anzsrc-for:01
10 anzsrc-for:0104
11 schema:author Nd790fb067523496687269ef37b6257ff
12 schema:citation sg:pub.10.1007/978-1-4419-0318-1
13 sg:pub.10.1007/978-1-4899-3242-6
14 sg:pub.10.1007/bf02353641
15 sg:pub.10.1023/a:1011555016423
16 sg:pub.10.1023/a:1020505722924
17 sg:pub.10.1023/a:1026142601822
18 sg:pub.10.2165/00003088-199936040-00001
19 https://app.dimensions.ai/details/publication/pub.1109704884
20 https://app.dimensions.ai/details/publication/pub.1109705877
21 https://doi.org/10.1016/s0167-9473(97)00012-1
22 https://doi.org/10.1016/s0928-0987(01)00096-3
23 https://doi.org/10.1080/01621459.2000.10474265
24 https://doi.org/10.1080/10543409508835104
25 https://doi.org/10.1093/biomet/73.3.645
26 https://doi.org/10.1146/annurev.pharmtox.40.1.209
27 https://doi.org/10.1146/annurev.pharmtox.40.1.67
28 https://doi.org/10.1177/00912700022009530
29 https://doi.org/10.1201/9780203910276.ch5
30 https://doi.org/10.1214/aos/1176347130
31 https://doi.org/10.2307/2669749
32 https://doi.org/10.2307/2669750
33 https://doi.org/10.2307/2669752
34 schema:datePublished 2006-06
35 schema:datePublishedReg 2006-06-01
36 schema:description Reliable estimation methods for non-linear mixed-effects models are now available and, although these models are increasingly used, only a limited number of statistical developments for their evaluation have been reported. We develop a criterion and a test to evaluate nonlinear mixed-effects models based on the whole predictive distribution. For each observation, we define the prediction discrepancy (pd) as the percentile of the observation in the whole marginal predictive distribution under H(0). We propose to compute prediction discrepancies using Monte Carlo integration which does not require model approximation. If the model is valid, these pd should be uniformly distributed over (0, 1) which can be tested by a Kolmogorov-Smirnov test. In a simulation study based on a standard population pharmacokinetic model, we compare and show the interest of this criterion with respect to the one most frequently used to evaluate nonlinear mixed-effects models: standardized prediction errors (spe) which are evaluated using a first order approximation of the model. Trends in pd can also be evaluated via several plots to check for specific departures from the model.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf Nbf4905ca384e4da6bd944fd0c6992d54
41 Nc39b9f98f6f940379a418b30e3289a4e
42 sg:journal.1016394
43 schema:name Prediction Discrepancies for the Evaluation of Nonlinear Mixed-Effects Models
44 schema:pagination 345-367
45 schema:productId N05d1f26298ce41ab8cd1da6f955d802f
46 N649931bb0d5b46e7b53ac3c8157817b6
47 Na0f2a8ad99ff4987a95043d3f403b3f5
48 Nf7800b26ad5b466d951c61520816a64c
49 Nf7acfc2cc9584dfe98ff65f6beb86359
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015863917
51 https://doi.org/10.1007/s10928-005-0016-4
52 schema:sdDatePublished 2019-04-11T13:55
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N8ad4132b5fde4851ad96008c43d80416
55 schema:url http://link.springer.com/10.1007%2Fs10928-005-0016-4
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0302e96044fa4680bce4679130091972 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Models, Statistical
61 rdf:type schema:DefinedTerm
62 N05d1f26298ce41ab8cd1da6f955d802f schema:name dimensions_id
63 schema:value pub.1015863917
64 rdf:type schema:PropertyValue
65 N164af7593f0441c789b1543d4dcdd47f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Pharmacokinetics
67 rdf:type schema:DefinedTerm
68 N3e0a8c4f1e774cd7b434aa33bd7cf624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Statistical Distributions
70 rdf:type schema:DefinedTerm
71 N525edeb155be421faa47dbe9e08eea01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Models, Biological
73 rdf:type schema:DefinedTerm
74 N649931bb0d5b46e7b53ac3c8157817b6 schema:name pubmed_id
75 schema:value 16284919
76 rdf:type schema:PropertyValue
77 N80a703f07d074f3693dcdabc34c1eda0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Monte Carlo Method
79 rdf:type schema:DefinedTerm
80 N8ad4132b5fde4851ad96008c43d80416 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N925197e12eaa40d4a702650543d6b00d rdf:first sg:person.01025210630.80
83 rdf:rest rdf:nil
84 Na0f2a8ad99ff4987a95043d3f403b3f5 schema:name nlm_unique_id
85 schema:value 101096520
86 rdf:type schema:PropertyValue
87 Nbcd74fec6b51428694b45bfe592ed886 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Likelihood Functions
89 rdf:type schema:DefinedTerm
90 Nbf4905ca384e4da6bd944fd0c6992d54 schema:issueNumber 3
91 rdf:type schema:PublicationIssue
92 Nc39b9f98f6f940379a418b30e3289a4e schema:volumeNumber 33
93 rdf:type schema:PublicationVolume
94 Nd790fb067523496687269ef37b6257ff rdf:first sg:person.0722247775.85
95 rdf:rest N925197e12eaa40d4a702650543d6b00d
96 Nd954b7d9032f474c8f8c6e2cc67186a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Algorithms
98 rdf:type schema:DefinedTerm
99 Nf7800b26ad5b466d951c61520816a64c schema:name doi
100 schema:value 10.1007/s10928-005-0016-4
101 rdf:type schema:PropertyValue
102 Nf7acfc2cc9584dfe98ff65f6beb86359 schema:name readcube_id
103 schema:value 4b969fed427577ea60320f57e76b16116d58027339c37f1f92a3a0e9bc55b73e
104 rdf:type schema:PropertyValue
105 Nfcdf72e1469e4fe7bf8deccb72e4ebca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Computer Simulation
107 rdf:type schema:DefinedTerm
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
112 schema:name Statistics
113 rdf:type schema:DefinedTerm
114 sg:journal.1016394 schema:issn 1567-567X
115 2168-5789
116 schema:name Journal of Pharmacokinetics and Pharmacodynamics
117 rdf:type schema:Periodical
118 sg:person.01025210630.80 schema:affiliation https://www.grid.ac/institutes/grid.457369.a
119 schema:familyName Escolano
120 schema:givenName Sylvie
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025210630.80
122 rdf:type schema:Person
123 sg:person.0722247775.85 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
124 schema:familyName Mentré
125 schema:givenName France
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722247775.85
127 rdf:type schema:Person
128 sg:pub.10.1007/978-1-4419-0318-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109704884
129 https://doi.org/10.1007/978-1-4419-0318-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-1-4899-3242-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705877
132 https://doi.org/10.1007/978-1-4899-3242-6
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf02353641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008936461
135 https://doi.org/10.1007/bf02353641
136 rdf:type schema:CreativeWork
137 sg:pub.10.1023/a:1011555016423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032175473
138 https://doi.org/10.1023/a:1011555016423
139 rdf:type schema:CreativeWork
140 sg:pub.10.1023/a:1020505722924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024194641
141 https://doi.org/10.1023/a:1020505722924
142 rdf:type schema:CreativeWork
143 sg:pub.10.1023/a:1026142601822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011031340
144 https://doi.org/10.1023/a:1026142601822
145 rdf:type schema:CreativeWork
146 sg:pub.10.2165/00003088-199936040-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006217236
147 https://doi.org/10.2165/00003088-199936040-00001
148 rdf:type schema:CreativeWork
149 https://app.dimensions.ai/details/publication/pub.1109704884 schema:CreativeWork
150 https://app.dimensions.ai/details/publication/pub.1109705877 schema:CreativeWork
151 https://doi.org/10.1016/s0167-9473(97)00012-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017898851
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0928-0987(01)00096-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033937809
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1080/01621459.2000.10474265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305759
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/10543409508835104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012461159
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/biomet/73.3.645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059419639
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1146/annurev.pharmtox.40.1.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050091365
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1146/annurev.pharmtox.40.1.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014703851
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1177/00912700022009530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009074459
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1201/9780203910276.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013734192
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1214/aos/1176347130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408278
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2307/2669749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070052377
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2307/2669750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070052378
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2307/2669752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070052380
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.457369.a schema:alternateName Délégation Paris 11
178 schema:name INSERM, U 472, 94800, Villejuif Cedex, France
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
181 schema:name Department of Epidemiology, Biostatistics and Clinical Research, University Paris 7, 75018, Paris, France
182 INSERM, U738, 46 rue Henri Huchard, 75018, Paris, France
183 University Hospital Bichat – Claude Bernard, 75018, Paris, France
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...