Ontology type: schema:ScholarlyArticle Open Access: True
2006-06
AUTHORSFrance Mentré, Sylvie Escolano
ABSTRACTReliable estimation methods for non-linear mixed-effects models are now available and, although these models are increasingly used, only a limited number of statistical developments for their evaluation have been reported. We develop a criterion and a test to evaluate nonlinear mixed-effects models based on the whole predictive distribution. For each observation, we define the prediction discrepancy (pd) as the percentile of the observation in the whole marginal predictive distribution under H(0). We propose to compute prediction discrepancies using Monte Carlo integration which does not require model approximation. If the model is valid, these pd should be uniformly distributed over (0, 1) which can be tested by a Kolmogorov-Smirnov test. In a simulation study based on a standard population pharmacokinetic model, we compare and show the interest of this criterion with respect to the one most frequently used to evaluate nonlinear mixed-effects models: standardized prediction errors (spe) which are evaluated using a first order approximation of the model. Trends in pd can also be evaluated via several plots to check for specific departures from the model. More... »
PAGES345-367
http://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4
DOIhttp://dx.doi.org/10.1007/s10928-005-0016-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015863917
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/16284919
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computer Simulation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Likelihood Functions",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Biological",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Statistical",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Monte Carlo Method",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Pharmacokinetics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Statistical Distributions",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Paris Diderot University",
"id": "https://www.grid.ac/institutes/grid.7452.4",
"name": [
"INSERM, U738, 46 rue Henri Huchard, 75018, Paris, France",
"Department of Epidemiology, Biostatistics and Clinical Research, University Paris 7, 75018, Paris, France",
"University Hospital Bichat \u2013 Claude Bernard, 75018, Paris, France"
],
"type": "Organization"
},
"familyName": "Mentr\u00e9",
"givenName": "France",
"id": "sg:person.0722247775.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722247775.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "D\u00e9l\u00e9gation Paris 11",
"id": "https://www.grid.ac/institutes/grid.457369.a",
"name": [
"INSERM, U 472, 94800, Villejuif Cedex, France"
],
"type": "Organization"
},
"familyName": "Escolano",
"givenName": "Sylvie",
"id": "sg:person.01025210630.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025210630.80"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.2165/00003088-199936040-00001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006217236",
"https://doi.org/10.2165/00003088-199936040-00001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02353641",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008936461",
"https://doi.org/10.1007/bf02353641"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/00912700022009530",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009074459"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1026142601822",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011031340",
"https://doi.org/10.1023/a:1026142601822"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/10543409508835104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012461159"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1201/9780203910276.ch5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013734192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev.pharmtox.40.1.67",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014703851"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0167-9473(97)00012-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017898851"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1020505722924",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024194641",
"https://doi.org/10.1023/a:1020505722924"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1011555016423",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032175473",
"https://doi.org/10.1023/a:1011555016423"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0928-0987(01)00096-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033937809"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev.pharmtox.40.1.209",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050091365"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.2000.10474265",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058305759"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/biomet/73.3.645",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059419639"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aos/1176347130",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064408278"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2669749",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070052377"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2669750",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070052378"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2669752",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070052380"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1109704884",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-0318-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109704884",
"https://doi.org/10.1007/978-1-4419-0318-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-0318-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109704884",
"https://doi.org/10.1007/978-1-4419-0318-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-0318-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109704884",
"https://doi.org/10.1007/978-1-4419-0318-1"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1109705877",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-3242-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705877",
"https://doi.org/10.1007/978-1-4899-3242-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4899-3242-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109705877",
"https://doi.org/10.1007/978-1-4899-3242-6"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-06",
"datePublishedReg": "2006-06-01",
"description": "Reliable estimation methods for non-linear mixed-effects models are now available and, although these models are increasingly used, only a limited number of statistical developments for their evaluation have been reported. We develop a criterion and a test to evaluate nonlinear mixed-effects models based on the whole predictive distribution. For each observation, we define the prediction discrepancy (pd) as the percentile of the observation in the whole marginal predictive distribution under H(0). We propose to compute prediction discrepancies using Monte Carlo integration which does not require model approximation. If the model is valid, these pd should be uniformly distributed over (0, 1) which can be tested by a Kolmogorov-Smirnov test. In a simulation study based on a standard population pharmacokinetic model, we compare and show the interest of this criterion with respect to the one most frequently used to evaluate nonlinear mixed-effects models: standardized prediction errors (spe) which are evaluated using a first order approximation of the model. Trends in pd can also be evaluated via several plots to check for specific departures from the model.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10928-005-0016-4",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1016394",
"issn": [
"1567-567X",
"2168-5789"
],
"name": "Journal of Pharmacokinetics and Pharmacodynamics",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "33"
}
],
"name": "Prediction Discrepancies for the Evaluation of Nonlinear Mixed-Effects Models",
"pagination": "345-367",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"4b969fed427577ea60320f57e76b16116d58027339c37f1f92a3a0e9bc55b73e"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"16284919"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101096520"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10928-005-0016-4"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015863917"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10928-005-0016-4",
"https://app.dimensions.ai/details/publication/pub.1015863917"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:55",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs10928-005-0016-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10928-005-0016-4'
This table displays all metadata directly associated to this object as RDF triples.
184 TRIPLES
21 PREDICATES
59 URIs
29 LITERALS
17 BLANK NODES